--- license: apache-2.0 library_name: transformers pipeline_tag: text-generation language: - bg - ca - code - cs - cy - da - de - el - en - es - et - eu - fi - fr - ga - gl - hr - hu - it - lt - lv - mt - nl - nn - \no - oc - pl - pt - ro - ru - sh - sk - sl - sr - sv - uk datasets: - oscar-corpus/colossal-oscar-1.0 - HuggingFaceFW/fineweb-edu - joelniklaus/eurlex_resources - joelito/legal-mc4 - projecte-aina/CATalog - UFRGS/brwac - community-datasets/hrwac - danish-foundation-models/danish-gigaword - HiTZ/euscrawl - PleIAs/French-PD-Newspapers - PleIAs/French-PD-Books - AI-team-UoA/greek_legal_code - HiTZ/latxa-corpus-v1.1 - allenai/peS2o - pile-of-law/pile-of-law - PORTULAN/parlamento-pt - hoskinson-center/proof-pile - togethercomputer/RedPajama-Data-1T - bigcode/starcoderdata - bjoernp/tagesschau-2018-2023 - EleutherAI/the_pile_deduplicated base_model: BSC-LT/salamandra-7b-instruct tags: - TensorBlock - GGUF ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## BSC-LT/salamandra-7b-instruct - GGUF This repo contains GGUF format model files for [BSC-LT/salamandra-7b-instruct](https://huggingface.co/BSC-LT/salamandra-7b-instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4658](https://github.com/ggerganov/llama.cpp/commit/855cd0734aca26c86cc23d94aefd34f934464ac9).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [salamandra-7b-instruct-Q2_K.gguf](https://huggingface.co/tensorblock/salamandra-7b-instruct-GGUF/blob/main/salamandra-7b-instruct-Q2_K.gguf) | Q2_K | 3.305 GB | smallest, significant quality loss - not recommended for most purposes | | [salamandra-7b-instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/salamandra-7b-instruct-GGUF/blob/main/salamandra-7b-instruct-Q3_K_S.gguf) | Q3_K_S | 3.755 GB | very small, high quality loss | | [salamandra-7b-instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/salamandra-7b-instruct-GGUF/blob/main/salamandra-7b-instruct-Q3_K_M.gguf) | Q3_K_M | 4.048 GB | very small, high quality loss | | [salamandra-7b-instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/salamandra-7b-instruct-GGUF/blob/main/salamandra-7b-instruct-Q3_K_L.gguf) | Q3_K_L | 4.300 GB | small, substantial quality loss | | [salamandra-7b-instruct-Q4_0.gguf](https://huggingface.co/tensorblock/salamandra-7b-instruct-GGUF/blob/main/salamandra-7b-instruct-Q4_0.gguf) | Q4_0 | 4.647 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [salamandra-7b-instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/salamandra-7b-instruct-GGUF/blob/main/salamandra-7b-instruct-Q4_K_S.gguf) | Q4_K_S | 4.672 GB | small, greater quality loss | | [salamandra-7b-instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/salamandra-7b-instruct-GGUF/blob/main/salamandra-7b-instruct-Q4_K_M.gguf) | Q4_K_M | 4.851 GB | medium, balanced quality - recommended | | [salamandra-7b-instruct-Q5_0.gguf](https://huggingface.co/tensorblock/salamandra-7b-instruct-GGUF/blob/main/salamandra-7b-instruct-Q5_0.gguf) | Q5_0 | 5.487 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [salamandra-7b-instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/salamandra-7b-instruct-GGUF/blob/main/salamandra-7b-instruct-Q5_K_S.gguf) | Q5_K_S | 5.487 GB | large, low quality loss - recommended | | [salamandra-7b-instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/salamandra-7b-instruct-GGUF/blob/main/salamandra-7b-instruct-Q5_K_M.gguf) | Q5_K_M | 5.592 GB | large, very low quality loss - recommended | | [salamandra-7b-instruct-Q6_K.gguf](https://huggingface.co/tensorblock/salamandra-7b-instruct-GGUF/blob/main/salamandra-7b-instruct-Q6_K.gguf) | Q6_K | 6.380 GB | very large, extremely low quality loss | | [salamandra-7b-instruct-Q8_0.gguf](https://huggingface.co/tensorblock/salamandra-7b-instruct-GGUF/blob/main/salamandra-7b-instruct-Q8_0.gguf) | Q8_0 | 8.261 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/salamandra-7b-instruct-GGUF --include "salamandra-7b-instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/salamandra-7b-instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```