morriszms's picture
Update README.md
a4de5fc verified
metadata
tags:
  - mteb
  - sentence-transformers
  - transformers
  - Qwen2
  - sentence-similarity
  - TensorBlock
  - GGUF
license: apache-2.0
base_model: Alibaba-NLP/gte-Qwen2-7B-instruct
model-index:
  - name: gte-qwen2-7B-instruct
    results:
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (en)
          type: mteb/amazon_counterfactual
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 91.31343283582089
          - type: ap
            value: 67.64251402604096
          - type: f1
            value: 87.53372530755692
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonPolarityClassification
          type: mteb/amazon_polarity
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 97.497825
          - type: ap
            value: 96.30329547047529
          - type: f1
            value: 97.49769793778039
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (en)
          type: mteb/amazon_reviews_multi
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 62.564
          - type: f1
            value: 60.975777935041066
      - task:
          type: Retrieval
        dataset:
          name: MTEB ArguAna
          type: mteb/arguana
          config: default
          split: test
          revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
        metrics:
          - type: map_at_1
            value: 36.486000000000004
          - type: map_at_10
            value: 54.842
          - type: map_at_100
            value: 55.206999999999994
          - type: map_at_1000
            value: 55.206999999999994
          - type: map_at_3
            value: 49.893
          - type: map_at_5
            value: 53.105000000000004
          - type: mrr_at_1
            value: 37.34
          - type: mrr_at_10
            value: 55.143
          - type: mrr_at_100
            value: 55.509
          - type: mrr_at_1000
            value: 55.509
          - type: mrr_at_3
            value: 50.212999999999994
          - type: mrr_at_5
            value: 53.432
          - type: ndcg_at_1
            value: 36.486000000000004
          - type: ndcg_at_10
            value: 64.273
          - type: ndcg_at_100
            value: 65.66199999999999
          - type: ndcg_at_1000
            value: 65.66199999999999
          - type: ndcg_at_3
            value: 54.352999999999994
          - type: ndcg_at_5
            value: 60.131
          - type: precision_at_1
            value: 36.486000000000004
          - type: precision_at_10
            value: 9.395000000000001
          - type: precision_at_100
            value: 0.996
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 22.428
          - type: precision_at_5
            value: 16.259
          - type: recall_at_1
            value: 36.486000000000004
          - type: recall_at_10
            value: 93.95400000000001
          - type: recall_at_100
            value: 99.644
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 67.283
          - type: recall_at_5
            value: 81.294
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringP2P
          type: mteb/arxiv-clustering-p2p
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 56.461169803700564
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringS2S
          type: mteb/arxiv-clustering-s2s
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 51.73600434466286
      - task:
          type: Reranking
        dataset:
          name: MTEB AskUbuntuDupQuestions
          type: mteb/askubuntudupquestions-reranking
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 67.57827065898053
          - type: mrr
            value: 79.08136569493911
      - task:
          type: STS
        dataset:
          name: MTEB BIOSSES
          type: mteb/biosses-sts
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 83.53324575999243
          - type: cos_sim_spearman
            value: 81.37173362822374
          - type: euclidean_pearson
            value: 82.19243335103444
          - type: euclidean_spearman
            value: 81.33679307304334
          - type: manhattan_pearson
            value: 82.38752665975699
          - type: manhattan_spearman
            value: 81.31510583189689
      - task:
          type: Classification
        dataset:
          name: MTEB Banking77Classification
          type: mteb/banking77
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 87.56818181818181
          - type: f1
            value: 87.25826722019875
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringP2P
          type: mteb/biorxiv-clustering-p2p
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 50.09239610327673
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringS2S
          type: mteb/biorxiv-clustering-s2s
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 46.64733054606282
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackAndroidRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: f46a197baaae43b4f621051089b82a364682dfeb
        metrics:
          - type: map_at_1
            value: 33.997
          - type: map_at_10
            value: 48.176
          - type: map_at_100
            value: 49.82
          - type: map_at_1000
            value: 49.924
          - type: map_at_3
            value: 43.626
          - type: map_at_5
            value: 46.275
          - type: mrr_at_1
            value: 42.059999999999995
          - type: mrr_at_10
            value: 53.726
          - type: mrr_at_100
            value: 54.398
          - type: mrr_at_1000
            value: 54.416
          - type: mrr_at_3
            value: 50.714999999999996
          - type: mrr_at_5
            value: 52.639
          - type: ndcg_at_1
            value: 42.059999999999995
          - type: ndcg_at_10
            value: 55.574999999999996
          - type: ndcg_at_100
            value: 60.744
          - type: ndcg_at_1000
            value: 61.85699999999999
          - type: ndcg_at_3
            value: 49.363
          - type: ndcg_at_5
            value: 52.44
          - type: precision_at_1
            value: 42.059999999999995
          - type: precision_at_10
            value: 11.101999999999999
          - type: precision_at_100
            value: 1.73
          - type: precision_at_1000
            value: 0.218
          - type: precision_at_3
            value: 24.464
          - type: precision_at_5
            value: 18.026
          - type: recall_at_1
            value: 33.997
          - type: recall_at_10
            value: 70.35900000000001
          - type: recall_at_100
            value: 91.642
          - type: recall_at_1000
            value: 97.977
          - type: recall_at_3
            value: 52.76
          - type: recall_at_5
            value: 61.148
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackEnglishRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
        metrics:
          - type: map_at_1
            value: 35.884
          - type: map_at_10
            value: 48.14
          - type: map_at_100
            value: 49.5
          - type: map_at_1000
            value: 49.63
          - type: map_at_3
            value: 44.646
          - type: map_at_5
            value: 46.617999999999995
          - type: mrr_at_1
            value: 44.458999999999996
          - type: mrr_at_10
            value: 53.751000000000005
          - type: mrr_at_100
            value: 54.37800000000001
          - type: mrr_at_1000
            value: 54.415
          - type: mrr_at_3
            value: 51.815
          - type: mrr_at_5
            value: 52.882
          - type: ndcg_at_1
            value: 44.458999999999996
          - type: ndcg_at_10
            value: 54.157
          - type: ndcg_at_100
            value: 58.362
          - type: ndcg_at_1000
            value: 60.178
          - type: ndcg_at_3
            value: 49.661
          - type: ndcg_at_5
            value: 51.74999999999999
          - type: precision_at_1
            value: 44.458999999999996
          - type: precision_at_10
            value: 10.248
          - type: precision_at_100
            value: 1.5890000000000002
          - type: precision_at_1000
            value: 0.207
          - type: precision_at_3
            value: 23.928
          - type: precision_at_5
            value: 16.878999999999998
          - type: recall_at_1
            value: 35.884
          - type: recall_at_10
            value: 64.798
          - type: recall_at_100
            value: 82.345
          - type: recall_at_1000
            value: 93.267
          - type: recall_at_3
            value: 51.847
          - type: recall_at_5
            value: 57.601
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackGamingRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 4885aa143210c98657558c04aaf3dc47cfb54340
        metrics:
          - type: map_at_1
            value: 39.383
          - type: map_at_10
            value: 53.714
          - type: map_at_100
            value: 54.838
          - type: map_at_1000
            value: 54.87800000000001
          - type: map_at_3
            value: 50.114999999999995
          - type: map_at_5
            value: 52.153000000000006
          - type: mrr_at_1
            value: 45.016
          - type: mrr_at_10
            value: 56.732000000000006
          - type: mrr_at_100
            value: 57.411
          - type: mrr_at_1000
            value: 57.431
          - type: mrr_at_3
            value: 54.044000000000004
          - type: mrr_at_5
            value: 55.639
          - type: ndcg_at_1
            value: 45.016
          - type: ndcg_at_10
            value: 60.228
          - type: ndcg_at_100
            value: 64.277
          - type: ndcg_at_1000
            value: 65.07
          - type: ndcg_at_3
            value: 54.124
          - type: ndcg_at_5
            value: 57.147000000000006
          - type: precision_at_1
            value: 45.016
          - type: precision_at_10
            value: 9.937
          - type: precision_at_100
            value: 1.288
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 24.471999999999998
          - type: precision_at_5
            value: 16.991
          - type: recall_at_1
            value: 39.383
          - type: recall_at_10
            value: 76.175
          - type: recall_at_100
            value: 93.02
          - type: recall_at_1000
            value: 98.60900000000001
          - type: recall_at_3
            value: 60.265
          - type: recall_at_5
            value: 67.46600000000001
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackGisRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 5003b3064772da1887988e05400cf3806fe491f2
        metrics:
          - type: map_at_1
            value: 27.426000000000002
          - type: map_at_10
            value: 37.397000000000006
          - type: map_at_100
            value: 38.61
          - type: map_at_1000
            value: 38.678000000000004
          - type: map_at_3
            value: 34.150999999999996
          - type: map_at_5
            value: 36.137
          - type: mrr_at_1
            value: 29.944
          - type: mrr_at_10
            value: 39.654
          - type: mrr_at_100
            value: 40.638000000000005
          - type: mrr_at_1000
            value: 40.691
          - type: mrr_at_3
            value: 36.817
          - type: mrr_at_5
            value: 38.524
          - type: ndcg_at_1
            value: 29.944
          - type: ndcg_at_10
            value: 43.094
          - type: ndcg_at_100
            value: 48.789
          - type: ndcg_at_1000
            value: 50.339999999999996
          - type: ndcg_at_3
            value: 36.984
          - type: ndcg_at_5
            value: 40.248
          - type: precision_at_1
            value: 29.944
          - type: precision_at_10
            value: 6.78
          - type: precision_at_100
            value: 1.024
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 15.895000000000001
          - type: precision_at_5
            value: 11.39
          - type: recall_at_1
            value: 27.426000000000002
          - type: recall_at_10
            value: 58.464000000000006
          - type: recall_at_100
            value: 84.193
          - type: recall_at_1000
            value: 95.52000000000001
          - type: recall_at_3
            value: 42.172
          - type: recall_at_5
            value: 50.101
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackMathematicaRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 90fceea13679c63fe563ded68f3b6f06e50061de
        metrics:
          - type: map_at_1
            value: 19.721
          - type: map_at_10
            value: 31.604
          - type: map_at_100
            value: 32.972
          - type: map_at_1000
            value: 33.077
          - type: map_at_3
            value: 27.218999999999998
          - type: map_at_5
            value: 29.53
          - type: mrr_at_1
            value: 25
          - type: mrr_at_10
            value: 35.843
          - type: mrr_at_100
            value: 36.785000000000004
          - type: mrr_at_1000
            value: 36.842000000000006
          - type: mrr_at_3
            value: 32.193
          - type: mrr_at_5
            value: 34.264
          - type: ndcg_at_1
            value: 25
          - type: ndcg_at_10
            value: 38.606
          - type: ndcg_at_100
            value: 44.272
          - type: ndcg_at_1000
            value: 46.527
          - type: ndcg_at_3
            value: 30.985000000000003
          - type: ndcg_at_5
            value: 34.43
          - type: precision_at_1
            value: 25
          - type: precision_at_10
            value: 7.811
          - type: precision_at_100
            value: 1.203
          - type: precision_at_1000
            value: 0.15
          - type: precision_at_3
            value: 15.423
          - type: precision_at_5
            value: 11.791
          - type: recall_at_1
            value: 19.721
          - type: recall_at_10
            value: 55.625
          - type: recall_at_100
            value: 79.34400000000001
          - type: recall_at_1000
            value: 95.208
          - type: recall_at_3
            value: 35.19
          - type: recall_at_5
            value: 43.626
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackPhysicsRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
        metrics:
          - type: map_at_1
            value: 33.784
          - type: map_at_10
            value: 47.522
          - type: map_at_100
            value: 48.949999999999996
          - type: map_at_1000
            value: 49.038
          - type: map_at_3
            value: 43.284
          - type: map_at_5
            value: 45.629
          - type: mrr_at_1
            value: 41.482
          - type: mrr_at_10
            value: 52.830999999999996
          - type: mrr_at_100
            value: 53.559999999999995
          - type: mrr_at_1000
            value: 53.588
          - type: mrr_at_3
            value: 50.016000000000005
          - type: mrr_at_5
            value: 51.614000000000004
          - type: ndcg_at_1
            value: 41.482
          - type: ndcg_at_10
            value: 54.569
          - type: ndcg_at_100
            value: 59.675999999999995
          - type: ndcg_at_1000
            value: 60.989000000000004
          - type: ndcg_at_3
            value: 48.187000000000005
          - type: ndcg_at_5
            value: 51.183
          - type: precision_at_1
            value: 41.482
          - type: precision_at_10
            value: 10.221
          - type: precision_at_100
            value: 1.486
          - type: precision_at_1000
            value: 0.17500000000000002
          - type: precision_at_3
            value: 23.548
          - type: precision_at_5
            value: 16.805
          - type: recall_at_1
            value: 33.784
          - type: recall_at_10
            value: 69.798
          - type: recall_at_100
            value: 90.098
          - type: recall_at_1000
            value: 98.176
          - type: recall_at_3
            value: 52.127
          - type: recall_at_5
            value: 59.861
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackProgrammersRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
        metrics:
          - type: map_at_1
            value: 28.038999999999998
          - type: map_at_10
            value: 41.904
          - type: map_at_100
            value: 43.36
          - type: map_at_1000
            value: 43.453
          - type: map_at_3
            value: 37.785999999999994
          - type: map_at_5
            value: 40.105000000000004
          - type: mrr_at_1
            value: 35.046
          - type: mrr_at_10
            value: 46.926
          - type: mrr_at_100
            value: 47.815000000000005
          - type: mrr_at_1000
            value: 47.849000000000004
          - type: mrr_at_3
            value: 44.273
          - type: mrr_at_5
            value: 45.774
          - type: ndcg_at_1
            value: 35.046
          - type: ndcg_at_10
            value: 48.937000000000005
          - type: ndcg_at_100
            value: 54.544000000000004
          - type: ndcg_at_1000
            value: 56.069
          - type: ndcg_at_3
            value: 42.858000000000004
          - type: ndcg_at_5
            value: 45.644
          - type: precision_at_1
            value: 35.046
          - type: precision_at_10
            value: 9.452
          - type: precision_at_100
            value: 1.429
          - type: precision_at_1000
            value: 0.173
          - type: precision_at_3
            value: 21.346999999999998
          - type: precision_at_5
            value: 15.342
          - type: recall_at_1
            value: 28.038999999999998
          - type: recall_at_10
            value: 64.59700000000001
          - type: recall_at_100
            value: 87.735
          - type: recall_at_1000
            value: 97.41300000000001
          - type: recall_at_3
            value: 47.368
          - type: recall_at_5
            value: 54.93900000000001
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 28.17291666666667
          - type: map_at_10
            value: 40.025749999999995
          - type: map_at_100
            value: 41.39208333333333
          - type: map_at_1000
            value: 41.499249999999996
          - type: map_at_3
            value: 36.347
          - type: map_at_5
            value: 38.41391666666667
          - type: mrr_at_1
            value: 33.65925
          - type: mrr_at_10
            value: 44.085499999999996
          - type: mrr_at_100
            value: 44.94116666666667
          - type: mrr_at_1000
            value: 44.9855
          - type: mrr_at_3
            value: 41.2815
          - type: mrr_at_5
            value: 42.91491666666666
          - type: ndcg_at_1
            value: 33.65925
          - type: ndcg_at_10
            value: 46.430833333333325
          - type: ndcg_at_100
            value: 51.761
          - type: ndcg_at_1000
            value: 53.50899999999999
          - type: ndcg_at_3
            value: 40.45133333333333
          - type: ndcg_at_5
            value: 43.31483333333334
          - type: precision_at_1
            value: 33.65925
          - type: precision_at_10
            value: 8.4995
          - type: precision_at_100
            value: 1.3210000000000004
          - type: precision_at_1000
            value: 0.16591666666666666
          - type: precision_at_3
            value: 19.165083333333335
          - type: precision_at_5
            value: 13.81816666666667
          - type: recall_at_1
            value: 28.17291666666667
          - type: recall_at_10
            value: 61.12624999999999
          - type: recall_at_100
            value: 83.97266666666667
          - type: recall_at_1000
            value: 95.66550000000001
          - type: recall_at_3
            value: 44.661249999999995
          - type: recall_at_5
            value: 51.983333333333334
          - type: map_at_1
            value: 17.936
          - type: map_at_10
            value: 27.399
          - type: map_at_100
            value: 28.632
          - type: map_at_1000
            value: 28.738000000000003
          - type: map_at_3
            value: 24.456
          - type: map_at_5
            value: 26.06
          - type: mrr_at_1
            value: 19.224
          - type: mrr_at_10
            value: 28.998
          - type: mrr_at_100
            value: 30.11
          - type: mrr_at_1000
            value: 30.177
          - type: mrr_at_3
            value: 26.247999999999998
          - type: mrr_at_5
            value: 27.708
          - type: ndcg_at_1
            value: 19.224
          - type: ndcg_at_10
            value: 32.911
          - type: ndcg_at_100
            value: 38.873999999999995
          - type: ndcg_at_1000
            value: 41.277
          - type: ndcg_at_3
            value: 27.142
          - type: ndcg_at_5
            value: 29.755
          - type: precision_at_1
            value: 19.224
          - type: precision_at_10
            value: 5.6930000000000005
          - type: precision_at_100
            value: 0.9259999999999999
          - type: precision_at_1000
            value: 0.126
          - type: precision_at_3
            value: 12.138
          - type: precision_at_5
            value: 8.909
          - type: recall_at_1
            value: 17.936
          - type: recall_at_10
            value: 48.096
          - type: recall_at_100
            value: 75.389
          - type: recall_at_1000
            value: 92.803
          - type: recall_at_3
            value: 32.812999999999995
          - type: recall_at_5
            value: 38.851
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackStatsRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
        metrics:
          - type: map_at_1
            value: 24.681
          - type: map_at_10
            value: 34.892
          - type: map_at_100
            value: 35.996
          - type: map_at_1000
            value: 36.083
          - type: map_at_3
            value: 31.491999999999997
          - type: map_at_5
            value: 33.632
          - type: mrr_at_1
            value: 28.528
          - type: mrr_at_10
            value: 37.694
          - type: mrr_at_100
            value: 38.613
          - type: mrr_at_1000
            value: 38.668
          - type: mrr_at_3
            value: 34.714
          - type: mrr_at_5
            value: 36.616
          - type: ndcg_at_1
            value: 28.528
          - type: ndcg_at_10
            value: 40.703
          - type: ndcg_at_100
            value: 45.993
          - type: ndcg_at_1000
            value: 47.847
          - type: ndcg_at_3
            value: 34.622
          - type: ndcg_at_5
            value: 38.035999999999994
          - type: precision_at_1
            value: 28.528
          - type: precision_at_10
            value: 6.902
          - type: precision_at_100
            value: 1.0370000000000001
          - type: precision_at_1000
            value: 0.126
          - type: precision_at_3
            value: 15.798000000000002
          - type: precision_at_5
            value: 11.655999999999999
          - type: recall_at_1
            value: 24.681
          - type: recall_at_10
            value: 55.81
          - type: recall_at_100
            value: 79.785
          - type: recall_at_1000
            value: 92.959
          - type: recall_at_3
            value: 39.074
          - type: recall_at_5
            value: 47.568
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackTexRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 46989137a86843e03a6195de44b09deda022eec7
        metrics:
          - type: map_at_1
            value: 18.627
          - type: map_at_10
            value: 27.872000000000003
          - type: map_at_100
            value: 29.237999999999996
          - type: map_at_1000
            value: 29.363
          - type: map_at_3
            value: 24.751
          - type: map_at_5
            value: 26.521
          - type: mrr_at_1
            value: 23.021
          - type: mrr_at_10
            value: 31.924000000000003
          - type: mrr_at_100
            value: 32.922000000000004
          - type: mrr_at_1000
            value: 32.988
          - type: mrr_at_3
            value: 29.192
          - type: mrr_at_5
            value: 30.798
          - type: ndcg_at_1
            value: 23.021
          - type: ndcg_at_10
            value: 33.535
          - type: ndcg_at_100
            value: 39.732
          - type: ndcg_at_1000
            value: 42.201
          - type: ndcg_at_3
            value: 28.153
          - type: ndcg_at_5
            value: 30.746000000000002
          - type: precision_at_1
            value: 23.021
          - type: precision_at_10
            value: 6.459
          - type: precision_at_100
            value: 1.1320000000000001
          - type: precision_at_1000
            value: 0.153
          - type: precision_at_3
            value: 13.719000000000001
          - type: precision_at_5
            value: 10.193000000000001
          - type: recall_at_1
            value: 18.627
          - type: recall_at_10
            value: 46.463
          - type: recall_at_100
            value: 74.226
          - type: recall_at_1000
            value: 91.28500000000001
          - type: recall_at_3
            value: 31.357000000000003
          - type: recall_at_5
            value: 38.067
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackUnixRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
        metrics:
          - type: map_at_1
            value: 31.457
          - type: map_at_10
            value: 42.888
          - type: map_at_100
            value: 44.24
          - type: map_at_1000
            value: 44.327
          - type: map_at_3
            value: 39.588
          - type: map_at_5
            value: 41.423
          - type: mrr_at_1
            value: 37.126999999999995
          - type: mrr_at_10
            value: 47.083000000000006
          - type: mrr_at_100
            value: 47.997
          - type: mrr_at_1000
            value: 48.044
          - type: mrr_at_3
            value: 44.574000000000005
          - type: mrr_at_5
            value: 46.202
          - type: ndcg_at_1
            value: 37.126999999999995
          - type: ndcg_at_10
            value: 48.833
          - type: ndcg_at_100
            value: 54.327000000000005
          - type: ndcg_at_1000
            value: 56.011
          - type: ndcg_at_3
            value: 43.541999999999994
          - type: ndcg_at_5
            value: 46.127
          - type: precision_at_1
            value: 37.126999999999995
          - type: precision_at_10
            value: 8.376999999999999
          - type: precision_at_100
            value: 1.2309999999999999
          - type: precision_at_1000
            value: 0.146
          - type: precision_at_3
            value: 20.211000000000002
          - type: precision_at_5
            value: 14.16
          - type: recall_at_1
            value: 31.457
          - type: recall_at_10
            value: 62.369
          - type: recall_at_100
            value: 85.444
          - type: recall_at_1000
            value: 96.65599999999999
          - type: recall_at_3
            value: 47.961
          - type: recall_at_5
            value: 54.676
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackWebmastersRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: 160c094312a0e1facb97e55eeddb698c0abe3571
        metrics:
          - type: map_at_1
            value: 27.139999999999997
          - type: map_at_10
            value: 38.801
          - type: map_at_100
            value: 40.549
          - type: map_at_1000
            value: 40.802
          - type: map_at_3
            value: 35.05
          - type: map_at_5
            value: 36.884
          - type: mrr_at_1
            value: 33.004
          - type: mrr_at_10
            value: 43.864
          - type: mrr_at_100
            value: 44.667
          - type: mrr_at_1000
            value: 44.717
          - type: mrr_at_3
            value: 40.777
          - type: mrr_at_5
            value: 42.319
          - type: ndcg_at_1
            value: 33.004
          - type: ndcg_at_10
            value: 46.022
          - type: ndcg_at_100
            value: 51.542
          - type: ndcg_at_1000
            value: 53.742000000000004
          - type: ndcg_at_3
            value: 39.795
          - type: ndcg_at_5
            value: 42.272
          - type: precision_at_1
            value: 33.004
          - type: precision_at_10
            value: 9.012
          - type: precision_at_100
            value: 1.7770000000000001
          - type: precision_at_1000
            value: 0.26
          - type: precision_at_3
            value: 19.038
          - type: precision_at_5
            value: 13.675999999999998
          - type: recall_at_1
            value: 27.139999999999997
          - type: recall_at_10
            value: 60.961
          - type: recall_at_100
            value: 84.451
          - type: recall_at_1000
            value: 98.113
          - type: recall_at_3
            value: 43.001
          - type: recall_at_5
            value: 49.896
      - task:
          type: Retrieval
        dataset:
          name: MTEB ClimateFEVER
          type: mteb/climate-fever
          config: default
          split: test
          revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
        metrics:
          - type: map_at_1
            value: 22.076999999999998
          - type: map_at_10
            value: 35.44
          - type: map_at_100
            value: 37.651
          - type: map_at_1000
            value: 37.824999999999996
          - type: map_at_3
            value: 30.764999999999997
          - type: map_at_5
            value: 33.26
          - type: mrr_at_1
            value: 50.163000000000004
          - type: mrr_at_10
            value: 61.207
          - type: mrr_at_100
            value: 61.675000000000004
          - type: mrr_at_1000
            value: 61.692
          - type: mrr_at_3
            value: 58.60999999999999
          - type: mrr_at_5
            value: 60.307
          - type: ndcg_at_1
            value: 50.163000000000004
          - type: ndcg_at_10
            value: 45.882
          - type: ndcg_at_100
            value: 53.239999999999995
          - type: ndcg_at_1000
            value: 55.852000000000004
          - type: ndcg_at_3
            value: 40.514
          - type: ndcg_at_5
            value: 42.038
          - type: precision_at_1
            value: 50.163000000000004
          - type: precision_at_10
            value: 13.466000000000001
          - type: precision_at_100
            value: 2.164
          - type: precision_at_1000
            value: 0.266
          - type: precision_at_3
            value: 29.707
          - type: precision_at_5
            value: 21.694
          - type: recall_at_1
            value: 22.076999999999998
          - type: recall_at_10
            value: 50.193
          - type: recall_at_100
            value: 74.993
          - type: recall_at_1000
            value: 89.131
          - type: recall_at_3
            value: 35.472
          - type: recall_at_5
            value: 41.814
      - task:
          type: Retrieval
        dataset:
          name: MTEB DBPedia
          type: mteb/dbpedia
          config: default
          split: test
          revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
        metrics:
          - type: map_at_1
            value: 9.953
          - type: map_at_10
            value: 24.515
          - type: map_at_100
            value: 36.173
          - type: map_at_1000
            value: 38.351
          - type: map_at_3
            value: 16.592000000000002
          - type: map_at_5
            value: 20.036
          - type: mrr_at_1
            value: 74.25
          - type: mrr_at_10
            value: 81.813
          - type: mrr_at_100
            value: 82.006
          - type: mrr_at_1000
            value: 82.011
          - type: mrr_at_3
            value: 80.875
          - type: mrr_at_5
            value: 81.362
          - type: ndcg_at_1
            value: 62.5
          - type: ndcg_at_10
            value: 52.42
          - type: ndcg_at_100
            value: 56.808
          - type: ndcg_at_1000
            value: 63.532999999999994
          - type: ndcg_at_3
            value: 56.654
          - type: ndcg_at_5
            value: 54.18300000000001
          - type: precision_at_1
            value: 74.25
          - type: precision_at_10
            value: 42.699999999999996
          - type: precision_at_100
            value: 13.675
          - type: precision_at_1000
            value: 2.664
          - type: precision_at_3
            value: 60.5
          - type: precision_at_5
            value: 52.800000000000004
          - type: recall_at_1
            value: 9.953
          - type: recall_at_10
            value: 30.253999999999998
          - type: recall_at_100
            value: 62.516000000000005
          - type: recall_at_1000
            value: 84.163
          - type: recall_at_3
            value: 18.13
          - type: recall_at_5
            value: 22.771
      - task:
          type: Classification
        dataset:
          name: MTEB EmotionClassification
          type: mteb/emotion
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 79.455
          - type: f1
            value: 74.16798697647569
      - task:
          type: Retrieval
        dataset:
          name: MTEB FEVER
          type: mteb/fever
          config: default
          split: test
          revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
        metrics:
          - type: map_at_1
            value: 87.531
          - type: map_at_10
            value: 93.16799999999999
          - type: map_at_100
            value: 93.341
          - type: map_at_1000
            value: 93.349
          - type: map_at_3
            value: 92.444
          - type: map_at_5
            value: 92.865
          - type: mrr_at_1
            value: 94.014
          - type: mrr_at_10
            value: 96.761
          - type: mrr_at_100
            value: 96.762
          - type: mrr_at_1000
            value: 96.762
          - type: mrr_at_3
            value: 96.672
          - type: mrr_at_5
            value: 96.736
          - type: ndcg_at_1
            value: 94.014
          - type: ndcg_at_10
            value: 95.112
          - type: ndcg_at_100
            value: 95.578
          - type: ndcg_at_1000
            value: 95.68900000000001
          - type: ndcg_at_3
            value: 94.392
          - type: ndcg_at_5
            value: 94.72500000000001
          - type: precision_at_1
            value: 94.014
          - type: precision_at_10
            value: 11.065
          - type: precision_at_100
            value: 1.157
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 35.259
          - type: precision_at_5
            value: 21.599
          - type: recall_at_1
            value: 87.531
          - type: recall_at_10
            value: 97.356
          - type: recall_at_100
            value: 98.965
          - type: recall_at_1000
            value: 99.607
          - type: recall_at_3
            value: 95.312
          - type: recall_at_5
            value: 96.295
      - task:
          type: Retrieval
        dataset:
          name: MTEB FiQA2018
          type: mteb/fiqa
          config: default
          split: test
          revision: 27a168819829fe9bcd655c2df245fb19452e8e06
        metrics:
          - type: map_at_1
            value: 32.055
          - type: map_at_10
            value: 53.114
          - type: map_at_100
            value: 55.235
          - type: map_at_1000
            value: 55.345
          - type: map_at_3
            value: 45.854
          - type: map_at_5
            value: 50.025
          - type: mrr_at_1
            value: 60.34
          - type: mrr_at_10
            value: 68.804
          - type: mrr_at_100
            value: 69.309
          - type: mrr_at_1000
            value: 69.32199999999999
          - type: mrr_at_3
            value: 66.40899999999999
          - type: mrr_at_5
            value: 67.976
          - type: ndcg_at_1
            value: 60.34
          - type: ndcg_at_10
            value: 62.031000000000006
          - type: ndcg_at_100
            value: 68.00500000000001
          - type: ndcg_at_1000
            value: 69.286
          - type: ndcg_at_3
            value: 56.355999999999995
          - type: ndcg_at_5
            value: 58.687
          - type: precision_at_1
            value: 60.34
          - type: precision_at_10
            value: 17.176
          - type: precision_at_100
            value: 2.36
          - type: precision_at_1000
            value: 0.259
          - type: precision_at_3
            value: 37.14
          - type: precision_at_5
            value: 27.809
          - type: recall_at_1
            value: 32.055
          - type: recall_at_10
            value: 70.91
          - type: recall_at_100
            value: 91.83
          - type: recall_at_1000
            value: 98.871
          - type: recall_at_3
            value: 51.202999999999996
          - type: recall_at_5
            value: 60.563
      - task:
          type: Retrieval
        dataset:
          name: MTEB HotpotQA
          type: mteb/hotpotqa
          config: default
          split: test
          revision: ab518f4d6fcca38d87c25209f94beba119d02014
        metrics:
          - type: map_at_1
            value: 43.68
          - type: map_at_10
            value: 64.389
          - type: map_at_100
            value: 65.24
          - type: map_at_1000
            value: 65.303
          - type: map_at_3
            value: 61.309000000000005
          - type: map_at_5
            value: 63.275999999999996
          - type: mrr_at_1
            value: 87.36
          - type: mrr_at_10
            value: 91.12
          - type: mrr_at_100
            value: 91.227
          - type: mrr_at_1000
            value: 91.229
          - type: mrr_at_3
            value: 90.57600000000001
          - type: mrr_at_5
            value: 90.912
          - type: ndcg_at_1
            value: 87.36
          - type: ndcg_at_10
            value: 73.076
          - type: ndcg_at_100
            value: 75.895
          - type: ndcg_at_1000
            value: 77.049
          - type: ndcg_at_3
            value: 68.929
          - type: ndcg_at_5
            value: 71.28
          - type: precision_at_1
            value: 87.36
          - type: precision_at_10
            value: 14.741000000000001
          - type: precision_at_100
            value: 1.694
          - type: precision_at_1000
            value: 0.185
          - type: precision_at_3
            value: 43.043
          - type: precision_at_5
            value: 27.681
          - type: recall_at_1
            value: 43.68
          - type: recall_at_10
            value: 73.707
          - type: recall_at_100
            value: 84.7
          - type: recall_at_1000
            value: 92.309
          - type: recall_at_3
            value: 64.564
          - type: recall_at_5
            value: 69.203
      - task:
          type: Classification
        dataset:
          name: MTEB ImdbClassification
          type: mteb/imdb
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 96.75399999999999
          - type: ap
            value: 95.29389839242187
          - type: f1
            value: 96.75348377433475
      - task:
          type: Retrieval
        dataset:
          name: MTEB MSMARCO
          type: mteb/msmarco
          config: default
          split: dev
          revision: c5a29a104738b98a9e76336939199e264163d4a0
        metrics:
          - type: map_at_1
            value: 25.176
          - type: map_at_10
            value: 38.598
          - type: map_at_100
            value: 39.707
          - type: map_at_1000
            value: 39.744
          - type: map_at_3
            value: 34.566
          - type: map_at_5
            value: 36.863
          - type: mrr_at_1
            value: 25.874000000000002
          - type: mrr_at_10
            value: 39.214
          - type: mrr_at_100
            value: 40.251
          - type: mrr_at_1000
            value: 40.281
          - type: mrr_at_3
            value: 35.291
          - type: mrr_at_5
            value: 37.545
          - type: ndcg_at_1
            value: 25.874000000000002
          - type: ndcg_at_10
            value: 45.98
          - type: ndcg_at_100
            value: 51.197
          - type: ndcg_at_1000
            value: 52.073
          - type: ndcg_at_3
            value: 37.785999999999994
          - type: ndcg_at_5
            value: 41.870000000000005
          - type: precision_at_1
            value: 25.874000000000002
          - type: precision_at_10
            value: 7.181
          - type: precision_at_100
            value: 0.979
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 16.051000000000002
          - type: precision_at_5
            value: 11.713
          - type: recall_at_1
            value: 25.176
          - type: recall_at_10
            value: 68.67699999999999
          - type: recall_at_100
            value: 92.55
          - type: recall_at_1000
            value: 99.164
          - type: recall_at_3
            value: 46.372
          - type: recall_at_5
            value: 56.16
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (en)
          type: mteb/mtop_domain
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 99.03784769721841
          - type: f1
            value: 98.97791641821495
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (en)
          type: mteb/mtop_intent
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 91.88326493388054
          - type: f1
            value: 73.74809928034335
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (en)
          type: mteb/amazon_massive_intent
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 85.41358439811701
          - type: f1
            value: 83.503679460639
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (en)
          type: mteb/amazon_massive_scenario
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 89.77135171486215
          - type: f1
            value: 88.89843747468366
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringP2P
          type: mteb/medrxiv-clustering-p2p
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 46.22695362087359
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringS2S
          type: mteb/medrxiv-clustering-s2s
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 44.132372165849425
      - task:
          type: Reranking
        dataset:
          name: MTEB MindSmallReranking
          type: mteb/mind_small
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 33.35680810650402
          - type: mrr
            value: 34.72625715637218
      - task:
          type: Retrieval
        dataset:
          name: MTEB NFCorpus
          type: mteb/nfcorpus
          config: default
          split: test
          revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
        metrics:
          - type: map_at_1
            value: 7.165000000000001
          - type: map_at_10
            value: 15.424
          - type: map_at_100
            value: 20.28
          - type: map_at_1000
            value: 22.065
          - type: map_at_3
            value: 11.236
          - type: map_at_5
            value: 13.025999999999998
          - type: mrr_at_1
            value: 51.702999999999996
          - type: mrr_at_10
            value: 59.965
          - type: mrr_at_100
            value: 60.667
          - type: mrr_at_1000
            value: 60.702999999999996
          - type: mrr_at_3
            value: 58.772000000000006
          - type: mrr_at_5
            value: 59.267
          - type: ndcg_at_1
            value: 49.536
          - type: ndcg_at_10
            value: 40.6
          - type: ndcg_at_100
            value: 37.848
          - type: ndcg_at_1000
            value: 46.657
          - type: ndcg_at_3
            value: 46.117999999999995
          - type: ndcg_at_5
            value: 43.619
          - type: precision_at_1
            value: 51.393
          - type: precision_at_10
            value: 30.31
          - type: precision_at_100
            value: 9.972
          - type: precision_at_1000
            value: 2.329
          - type: precision_at_3
            value: 43.137
          - type: precision_at_5
            value: 37.585
          - type: recall_at_1
            value: 7.165000000000001
          - type: recall_at_10
            value: 19.689999999999998
          - type: recall_at_100
            value: 39.237
          - type: recall_at_1000
            value: 71.417
          - type: recall_at_3
            value: 12.247
          - type: recall_at_5
            value: 14.902999999999999
      - task:
          type: Retrieval
        dataset:
          name: MTEB NQ
          type: mteb/nq
          config: default
          split: test
          revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
        metrics:
          - type: map_at_1
            value: 42.653999999999996
          - type: map_at_10
            value: 59.611999999999995
          - type: map_at_100
            value: 60.32300000000001
          - type: map_at_1000
            value: 60.336
          - type: map_at_3
            value: 55.584999999999994
          - type: map_at_5
            value: 58.19
          - type: mrr_at_1
            value: 47.683
          - type: mrr_at_10
            value: 62.06700000000001
          - type: mrr_at_100
            value: 62.537
          - type: mrr_at_1000
            value: 62.544999999999995
          - type: mrr_at_3
            value: 59.178
          - type: mrr_at_5
            value: 61.034
          - type: ndcg_at_1
            value: 47.654
          - type: ndcg_at_10
            value: 67.001
          - type: ndcg_at_100
            value: 69.73899999999999
          - type: ndcg_at_1000
            value: 69.986
          - type: ndcg_at_3
            value: 59.95700000000001
          - type: ndcg_at_5
            value: 64.025
          - type: precision_at_1
            value: 47.654
          - type: precision_at_10
            value: 10.367999999999999
          - type: precision_at_100
            value: 1.192
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 26.651000000000003
          - type: precision_at_5
            value: 18.459
          - type: recall_at_1
            value: 42.653999999999996
          - type: recall_at_10
            value: 86.619
          - type: recall_at_100
            value: 98.04899999999999
          - type: recall_at_1000
            value: 99.812
          - type: recall_at_3
            value: 68.987
          - type: recall_at_5
            value: 78.158
      - task:
          type: Retrieval
        dataset:
          name: MTEB QuoraRetrieval
          type: mteb/quora
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 72.538
          - type: map_at_10
            value: 86.702
          - type: map_at_100
            value: 87.31
          - type: map_at_1000
            value: 87.323
          - type: map_at_3
            value: 83.87
          - type: map_at_5
            value: 85.682
          - type: mrr_at_1
            value: 83.31
          - type: mrr_at_10
            value: 89.225
          - type: mrr_at_100
            value: 89.30399999999999
          - type: mrr_at_1000
            value: 89.30399999999999
          - type: mrr_at_3
            value: 88.44300000000001
          - type: mrr_at_5
            value: 89.005
          - type: ndcg_at_1
            value: 83.32000000000001
          - type: ndcg_at_10
            value: 90.095
          - type: ndcg_at_100
            value: 91.12
          - type: ndcg_at_1000
            value: 91.179
          - type: ndcg_at_3
            value: 87.606
          - type: ndcg_at_5
            value: 89.031
          - type: precision_at_1
            value: 83.32000000000001
          - type: precision_at_10
            value: 13.641
          - type: precision_at_100
            value: 1.541
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 38.377
          - type: precision_at_5
            value: 25.162000000000003
          - type: recall_at_1
            value: 72.538
          - type: recall_at_10
            value: 96.47200000000001
          - type: recall_at_100
            value: 99.785
          - type: recall_at_1000
            value: 99.99900000000001
          - type: recall_at_3
            value: 89.278
          - type: recall_at_5
            value: 93.367
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClustering
          type: mteb/reddit-clustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 73.55219145406065
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClusteringP2P
          type: mteb/reddit-clustering-p2p
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 74.13437105242755
      - task:
          type: Retrieval
        dataset:
          name: MTEB SCIDOCS
          type: mteb/scidocs
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 6.873
          - type: map_at_10
            value: 17.944
          - type: map_at_100
            value: 21.171
          - type: map_at_1000
            value: 21.528
          - type: map_at_3
            value: 12.415
          - type: map_at_5
            value: 15.187999999999999
          - type: mrr_at_1
            value: 33.800000000000004
          - type: mrr_at_10
            value: 46.455
          - type: mrr_at_100
            value: 47.378
          - type: mrr_at_1000
            value: 47.394999999999996
          - type: mrr_at_3
            value: 42.367
          - type: mrr_at_5
            value: 44.972
          - type: ndcg_at_1
            value: 33.800000000000004
          - type: ndcg_at_10
            value: 28.907
          - type: ndcg_at_100
            value: 39.695
          - type: ndcg_at_1000
            value: 44.582
          - type: ndcg_at_3
            value: 26.949
          - type: ndcg_at_5
            value: 23.988
          - type: precision_at_1
            value: 33.800000000000004
          - type: precision_at_10
            value: 15.079999999999998
          - type: precision_at_100
            value: 3.056
          - type: precision_at_1000
            value: 0.42100000000000004
          - type: precision_at_3
            value: 25.167
          - type: precision_at_5
            value: 21.26
          - type: recall_at_1
            value: 6.873
          - type: recall_at_10
            value: 30.568
          - type: recall_at_100
            value: 62.062
          - type: recall_at_1000
            value: 85.37700000000001
          - type: recall_at_3
            value: 15.312999999999999
          - type: recall_at_5
            value: 21.575
      - task:
          type: STS
        dataset:
          name: MTEB SICK-R
          type: mteb/sickr-sts
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 82.37009118256057
          - type: cos_sim_spearman
            value: 79.27986395671529
          - type: euclidean_pearson
            value: 79.18037715442115
          - type: euclidean_spearman
            value: 79.28004791561621
          - type: manhattan_pearson
            value: 79.34062972800541
          - type: manhattan_spearman
            value: 79.43106695543402
      - task:
          type: STS
        dataset:
          name: MTEB STS12
          type: mteb/sts12-sts
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 87.48474767383833
          - type: cos_sim_spearman
            value: 79.54505388752513
          - type: euclidean_pearson
            value: 83.43282704179565
          - type: euclidean_spearman
            value: 79.54579919925405
          - type: manhattan_pearson
            value: 83.77564492427952
          - type: manhattan_spearman
            value: 79.84558396989286
      - task:
          type: STS
        dataset:
          name: MTEB STS13
          type: mteb/sts13-sts
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 88.803698035802
          - type: cos_sim_spearman
            value: 88.83451367754881
          - type: euclidean_pearson
            value: 88.28939285711628
          - type: euclidean_spearman
            value: 88.83528996073112
          - type: manhattan_pearson
            value: 88.28017412671795
          - type: manhattan_spearman
            value: 88.9228828016344
      - task:
          type: STS
        dataset:
          name: MTEB STS14
          type: mteb/sts14-sts
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 85.27469288153428
          - type: cos_sim_spearman
            value: 83.87477064876288
          - type: euclidean_pearson
            value: 84.2601737035379
          - type: euclidean_spearman
            value: 83.87431082479074
          - type: manhattan_pearson
            value: 84.3621547772745
          - type: manhattan_spearman
            value: 84.12094375000423
      - task:
          type: STS
        dataset:
          name: MTEB STS15
          type: mteb/sts15-sts
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 88.12749863201587
          - type: cos_sim_spearman
            value: 88.54287568368565
          - type: euclidean_pearson
            value: 87.90429700607999
          - type: euclidean_spearman
            value: 88.5437689576261
          - type: manhattan_pearson
            value: 88.19276653356833
          - type: manhattan_spearman
            value: 88.99995393814679
      - task:
          type: STS
        dataset:
          name: MTEB STS16
          type: mteb/sts16-sts
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 85.68398747560902
          - type: cos_sim_spearman
            value: 86.48815303460574
          - type: euclidean_pearson
            value: 85.52356631237954
          - type: euclidean_spearman
            value: 86.486391949551
          - type: manhattan_pearson
            value: 85.67267981761788
          - type: manhattan_spearman
            value: 86.7073696332485
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-en)
          type: mteb/sts17-crosslingual-sts
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 88.9057107443124
          - type: cos_sim_spearman
            value: 88.7312168757697
          - type: euclidean_pearson
            value: 88.72810439714794
          - type: euclidean_spearman
            value: 88.71976185854771
          - type: manhattan_pearson
            value: 88.50433745949111
          - type: manhattan_spearman
            value: 88.51726175544195
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (en)
          type: mteb/sts22-crosslingual-sts
          config: en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 67.59391795109886
          - type: cos_sim_spearman
            value: 66.87613008631367
          - type: euclidean_pearson
            value: 69.23198488262217
          - type: euclidean_spearman
            value: 66.85427723013692
          - type: manhattan_pearson
            value: 69.50730124841084
          - type: manhattan_spearman
            value: 67.10404669820792
      - task:
          type: STS
        dataset:
          name: MTEB STSBenchmark
          type: mteb/stsbenchmark-sts
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 87.0820605344619
          - type: cos_sim_spearman
            value: 86.8518089863434
          - type: euclidean_pearson
            value: 86.31087134689284
          - type: euclidean_spearman
            value: 86.8518520517941
          - type: manhattan_pearson
            value: 86.47203796160612
          - type: manhattan_spearman
            value: 87.1080149734421
      - task:
          type: Reranking
        dataset:
          name: MTEB SciDocsRR
          type: mteb/scidocs-reranking
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 89.09255369305481
          - type: mrr
            value: 97.10323445617563
      - task:
          type: Retrieval
        dataset:
          name: MTEB SciFact
          type: mteb/scifact
          config: default
          split: test
          revision: 0228b52cf27578f30900b9e5271d331663a030d7
        metrics:
          - type: map_at_1
            value: 61.260999999999996
          - type: map_at_10
            value: 74.043
          - type: map_at_100
            value: 74.37700000000001
          - type: map_at_1000
            value: 74.384
          - type: map_at_3
            value: 71.222
          - type: map_at_5
            value: 72.875
          - type: mrr_at_1
            value: 64.333
          - type: mrr_at_10
            value: 74.984
          - type: mrr_at_100
            value: 75.247
          - type: mrr_at_1000
            value: 75.25500000000001
          - type: mrr_at_3
            value: 73.167
          - type: mrr_at_5
            value: 74.35000000000001
          - type: ndcg_at_1
            value: 64.333
          - type: ndcg_at_10
            value: 79.06
          - type: ndcg_at_100
            value: 80.416
          - type: ndcg_at_1000
            value: 80.55600000000001
          - type: ndcg_at_3
            value: 74.753
          - type: ndcg_at_5
            value: 76.97500000000001
          - type: precision_at_1
            value: 64.333
          - type: precision_at_10
            value: 10.567
          - type: precision_at_100
            value: 1.1199999999999999
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 29.889
          - type: precision_at_5
            value: 19.533
          - type: recall_at_1
            value: 61.260999999999996
          - type: recall_at_10
            value: 93.167
          - type: recall_at_100
            value: 99
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 81.667
          - type: recall_at_5
            value: 87.394
      - task:
          type: PairClassification
        dataset:
          name: MTEB SprintDuplicateQuestions
          type: mteb/sprintduplicatequestions-pairclassification
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.71980198019801
          - type: cos_sim_ap
            value: 92.81616007802704
          - type: cos_sim_f1
            value: 85.17548454688318
          - type: cos_sim_precision
            value: 89.43894389438944
          - type: cos_sim_recall
            value: 81.3
          - type: dot_accuracy
            value: 99.71980198019801
          - type: dot_ap
            value: 92.81398760591358
          - type: dot_f1
            value: 85.17548454688318
          - type: dot_precision
            value: 89.43894389438944
          - type: dot_recall
            value: 81.3
          - type: euclidean_accuracy
            value: 99.71980198019801
          - type: euclidean_ap
            value: 92.81560637245072
          - type: euclidean_f1
            value: 85.17548454688318
          - type: euclidean_precision
            value: 89.43894389438944
          - type: euclidean_recall
            value: 81.3
          - type: manhattan_accuracy
            value: 99.73069306930694
          - type: manhattan_ap
            value: 93.14005487480794
          - type: manhattan_f1
            value: 85.56263269639068
          - type: manhattan_precision
            value: 91.17647058823529
          - type: manhattan_recall
            value: 80.60000000000001
          - type: max_accuracy
            value: 99.73069306930694
          - type: max_ap
            value: 93.14005487480794
          - type: max_f1
            value: 85.56263269639068
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClustering
          type: mteb/stackexchange-clustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 79.86443362395185
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClusteringP2P
          type: mteb/stackexchange-clustering-p2p
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 49.40897096662564
      - task:
          type: Reranking
        dataset:
          name: MTEB StackOverflowDupQuestions
          type: mteb/stackoverflowdupquestions-reranking
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 55.66040806627947
          - type: mrr
            value: 56.58670475766064
      - task:
          type: Summarization
        dataset:
          name: MTEB SummEval
          type: mteb/summeval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 31.51015090598575
          - type: cos_sim_spearman
            value: 31.35016454939226
          - type: dot_pearson
            value: 31.5150068731
          - type: dot_spearman
            value: 31.34790869023487
      - task:
          type: Retrieval
        dataset:
          name: MTEB TRECCOVID
          type: mteb/trec-covid
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.254
          - type: map_at_10
            value: 2.064
          - type: map_at_100
            value: 12.909
          - type: map_at_1000
            value: 31.761
          - type: map_at_3
            value: 0.738
          - type: map_at_5
            value: 1.155
          - type: mrr_at_1
            value: 96
          - type: mrr_at_10
            value: 98
          - type: mrr_at_100
            value: 98
          - type: mrr_at_1000
            value: 98
          - type: mrr_at_3
            value: 98
          - type: mrr_at_5
            value: 98
          - type: ndcg_at_1
            value: 93
          - type: ndcg_at_10
            value: 82.258
          - type: ndcg_at_100
            value: 64.34
          - type: ndcg_at_1000
            value: 57.912
          - type: ndcg_at_3
            value: 90.827
          - type: ndcg_at_5
            value: 86.79
          - type: precision_at_1
            value: 96
          - type: precision_at_10
            value: 84.8
          - type: precision_at_100
            value: 66
          - type: precision_at_1000
            value: 25.356
          - type: precision_at_3
            value: 94.667
          - type: precision_at_5
            value: 90.4
          - type: recall_at_1
            value: 0.254
          - type: recall_at_10
            value: 2.1950000000000003
          - type: recall_at_100
            value: 16.088
          - type: recall_at_1000
            value: 54.559000000000005
          - type: recall_at_3
            value: 0.75
          - type: recall_at_5
            value: 1.191
      - task:
          type: Retrieval
        dataset:
          name: MTEB Touche2020
          type: mteb/touche2020
          config: default
          split: test
          revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
        metrics:
          - type: map_at_1
            value: 2.976
          - type: map_at_10
            value: 11.389000000000001
          - type: map_at_100
            value: 18.429000000000002
          - type: map_at_1000
            value: 20.113
          - type: map_at_3
            value: 6.483
          - type: map_at_5
            value: 8.770999999999999
          - type: mrr_at_1
            value: 40.816
          - type: mrr_at_10
            value: 58.118
          - type: mrr_at_100
            value: 58.489999999999995
          - type: mrr_at_1000
            value: 58.489999999999995
          - type: mrr_at_3
            value: 53.061
          - type: mrr_at_5
            value: 57.041
          - type: ndcg_at_1
            value: 40.816
          - type: ndcg_at_10
            value: 30.567
          - type: ndcg_at_100
            value: 42.44
          - type: ndcg_at_1000
            value: 53.480000000000004
          - type: ndcg_at_3
            value: 36.016
          - type: ndcg_at_5
            value: 34.257
          - type: precision_at_1
            value: 42.857
          - type: precision_at_10
            value: 25.714
          - type: precision_at_100
            value: 8.429
          - type: precision_at_1000
            value: 1.5939999999999999
          - type: precision_at_3
            value: 36.735
          - type: precision_at_5
            value: 33.878
          - type: recall_at_1
            value: 2.976
          - type: recall_at_10
            value: 17.854999999999997
          - type: recall_at_100
            value: 51.833
          - type: recall_at_1000
            value: 86.223
          - type: recall_at_3
            value: 7.887
          - type: recall_at_5
            value: 12.026
      - task:
          type: Classification
        dataset:
          name: MTEB ToxicConversationsClassification
          type: mteb/toxic_conversations_50k
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 85.1174
          - type: ap
            value: 30.169441069345748
          - type: f1
            value: 69.79254701873245
      - task:
          type: Classification
        dataset:
          name: MTEB TweetSentimentExtractionClassification
          type: mteb/tweet_sentiment_extraction
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 72.58347481607245
          - type: f1
            value: 72.74877295564937
      - task:
          type: Clustering
        dataset:
          name: MTEB TwentyNewsgroupsClustering
          type: mteb/twentynewsgroups-clustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 53.90586138221305
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterSemEval2015
          type: mteb/twittersemeval2015-pairclassification
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 87.35769207844072
          - type: cos_sim_ap
            value: 77.9645072410354
          - type: cos_sim_f1
            value: 71.32352941176471
          - type: cos_sim_precision
            value: 66.5903890160183
          - type: cos_sim_recall
            value: 76.78100263852242
          - type: dot_accuracy
            value: 87.37557370209214
          - type: dot_ap
            value: 77.96250046429908
          - type: dot_f1
            value: 71.28932757557064
          - type: dot_precision
            value: 66.95249130938586
          - type: dot_recall
            value: 76.22691292875989
          - type: euclidean_accuracy
            value: 87.35173153722357
          - type: euclidean_ap
            value: 77.96520460741593
          - type: euclidean_f1
            value: 71.32470733210104
          - type: euclidean_precision
            value: 66.91329479768785
          - type: euclidean_recall
            value: 76.35883905013192
          - type: manhattan_accuracy
            value: 87.25636287774931
          - type: manhattan_ap
            value: 77.77752485611796
          - type: manhattan_f1
            value: 71.18148599269183
          - type: manhattan_precision
            value: 66.10859728506787
          - type: manhattan_recall
            value: 77.0976253298153
          - type: max_accuracy
            value: 87.37557370209214
          - type: max_ap
            value: 77.96520460741593
          - type: max_f1
            value: 71.32470733210104
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterURLCorpus
          type: mteb/twitterurlcorpus-pairclassification
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 89.38176737687739
          - type: cos_sim_ap
            value: 86.58811861657401
          - type: cos_sim_f1
            value: 79.09430644097604
          - type: cos_sim_precision
            value: 75.45085977911366
          - type: cos_sim_recall
            value: 83.10748383122882
          - type: dot_accuracy
            value: 89.38370784336554
          - type: dot_ap
            value: 86.58840606004333
          - type: dot_f1
            value: 79.10179860068133
          - type: dot_precision
            value: 75.44546153308643
          - type: dot_recall
            value: 83.13058207576223
          - type: euclidean_accuracy
            value: 89.38564830985369
          - type: euclidean_ap
            value: 86.58820721061164
          - type: euclidean_f1
            value: 79.09070942235888
          - type: euclidean_precision
            value: 75.38729937194697
          - type: euclidean_recall
            value: 83.17677856482906
          - type: manhattan_accuracy
            value: 89.40699344122326
          - type: manhattan_ap
            value: 86.60631843011362
          - type: manhattan_f1
            value: 79.14949970570925
          - type: manhattan_precision
            value: 75.78191039729502
          - type: manhattan_recall
            value: 82.83030489682784
          - type: max_accuracy
            value: 89.40699344122326
          - type: max_ap
            value: 86.60631843011362
          - type: max_f1
            value: 79.14949970570925
      - task:
          type: STS
        dataset:
          name: MTEB AFQMC
          type: C-MTEB/AFQMC
          config: default
          split: validation
          revision: b44c3b011063adb25877c13823db83bb193913c4
        metrics:
          - type: cos_sim_pearson
            value: 65.58442135663871
          - type: cos_sim_spearman
            value: 72.2538631361313
          - type: euclidean_pearson
            value: 70.97255486607429
          - type: euclidean_spearman
            value: 72.25374250228647
          - type: manhattan_pearson
            value: 70.83250199989911
          - type: manhattan_spearman
            value: 72.14819496536272
      - task:
          type: STS
        dataset:
          name: MTEB ATEC
          type: C-MTEB/ATEC
          config: default
          split: test
          revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
        metrics:
          - type: cos_sim_pearson
            value: 59.99478404929932
          - type: cos_sim_spearman
            value: 62.61836216999812
          - type: euclidean_pearson
            value: 66.86429811933593
          - type: euclidean_spearman
            value: 62.6183520374191
          - type: manhattan_pearson
            value: 66.8063778911633
          - type: manhattan_spearman
            value: 62.569607573241115
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (zh)
          type: mteb/amazon_reviews_multi
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 53.98400000000001
          - type: f1
            value: 51.21447361350723
      - task:
          type: STS
        dataset:
          name: MTEB BQ
          type: C-MTEB/BQ
          config: default
          split: test
          revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
        metrics:
          - type: cos_sim_pearson
            value: 79.11941660686553
          - type: cos_sim_spearman
            value: 81.25029594540435
          - type: euclidean_pearson
            value: 82.06973504238826
          - type: euclidean_spearman
            value: 81.2501989488524
          - type: manhattan_pearson
            value: 82.10094630392753
          - type: manhattan_spearman
            value: 81.27987244392389
      - task:
          type: Clustering
        dataset:
          name: MTEB CLSClusteringP2P
          type: C-MTEB/CLSClusteringP2P
          config: default
          split: test
          revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
        metrics:
          - type: v_measure
            value: 47.07270168705156
      - task:
          type: Clustering
        dataset:
          name: MTEB CLSClusteringS2S
          type: C-MTEB/CLSClusteringS2S
          config: default
          split: test
          revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
        metrics:
          - type: v_measure
            value: 45.98511703185043
      - task:
          type: Reranking
        dataset:
          name: MTEB CMedQAv1
          type: C-MTEB/CMedQAv1-reranking
          config: default
          split: test
          revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
        metrics:
          - type: map
            value: 88.19895157194931
          - type: mrr
            value: 90.21424603174603
      - task:
          type: Reranking
        dataset:
          name: MTEB CMedQAv2
          type: C-MTEB/CMedQAv2-reranking
          config: default
          split: test
          revision: 23d186750531a14a0357ca22cd92d712fd512ea0
        metrics:
          - type: map
            value: 88.03317320980119
          - type: mrr
            value: 89.9461507936508
      - task:
          type: Retrieval
        dataset:
          name: MTEB CmedqaRetrieval
          type: C-MTEB/CmedqaRetrieval
          config: default
          split: dev
          revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
        metrics:
          - type: map_at_1
            value: 29.037000000000003
          - type: map_at_10
            value: 42.001
          - type: map_at_100
            value: 43.773
          - type: map_at_1000
            value: 43.878
          - type: map_at_3
            value: 37.637
          - type: map_at_5
            value: 40.034
          - type: mrr_at_1
            value: 43.136
          - type: mrr_at_10
            value: 51.158
          - type: mrr_at_100
            value: 52.083
          - type: mrr_at_1000
            value: 52.12
          - type: mrr_at_3
            value: 48.733
          - type: mrr_at_5
            value: 50.025
          - type: ndcg_at_1
            value: 43.136
          - type: ndcg_at_10
            value: 48.685
          - type: ndcg_at_100
            value: 55.513
          - type: ndcg_at_1000
            value: 57.242000000000004
          - type: ndcg_at_3
            value: 43.329
          - type: ndcg_at_5
            value: 45.438
          - type: precision_at_1
            value: 43.136
          - type: precision_at_10
            value: 10.56
          - type: precision_at_100
            value: 1.6129999999999998
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 24.064
          - type: precision_at_5
            value: 17.269000000000002
          - type: recall_at_1
            value: 29.037000000000003
          - type: recall_at_10
            value: 59.245000000000005
          - type: recall_at_100
            value: 87.355
          - type: recall_at_1000
            value: 98.74000000000001
          - type: recall_at_3
            value: 42.99
          - type: recall_at_5
            value: 49.681999999999995
      - task:
          type: PairClassification
        dataset:
          name: MTEB Cmnli
          type: C-MTEB/CMNLI
          config: default
          split: validation
          revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
        metrics:
          - type: cos_sim_accuracy
            value: 82.68190018039687
          - type: cos_sim_ap
            value: 90.18017125327886
          - type: cos_sim_f1
            value: 83.64080906868193
          - type: cos_sim_precision
            value: 79.7076890489303
          - type: cos_sim_recall
            value: 87.98223053542202
          - type: dot_accuracy
            value: 82.68190018039687
          - type: dot_ap
            value: 90.18782350103646
          - type: dot_f1
            value: 83.64242087729039
          - type: dot_precision
            value: 79.65313028764805
          - type: dot_recall
            value: 88.05237315875614
          - type: euclidean_accuracy
            value: 82.68190018039687
          - type: euclidean_ap
            value: 90.1801957900632
          - type: euclidean_f1
            value: 83.63636363636364
          - type: euclidean_precision
            value: 79.52772506852203
          - type: euclidean_recall
            value: 88.19265840542437
          - type: manhattan_accuracy
            value: 82.14070956103427
          - type: manhattan_ap
            value: 89.96178420101427
          - type: manhattan_f1
            value: 83.21087838578791
          - type: manhattan_precision
            value: 78.35605121850475
          - type: manhattan_recall
            value: 88.70703764320785
          - type: max_accuracy
            value: 82.68190018039687
          - type: max_ap
            value: 90.18782350103646
          - type: max_f1
            value: 83.64242087729039
      - task:
          type: Retrieval
        dataset:
          name: MTEB CovidRetrieval
          type: C-MTEB/CovidRetrieval
          config: default
          split: dev
          revision: 1271c7809071a13532e05f25fb53511ffce77117
        metrics:
          - type: map_at_1
            value: 72.234
          - type: map_at_10
            value: 80.10000000000001
          - type: map_at_100
            value: 80.36
          - type: map_at_1000
            value: 80.363
          - type: map_at_3
            value: 78.315
          - type: map_at_5
            value: 79.607
          - type: mrr_at_1
            value: 72.392
          - type: mrr_at_10
            value: 80.117
          - type: mrr_at_100
            value: 80.36999999999999
          - type: mrr_at_1000
            value: 80.373
          - type: mrr_at_3
            value: 78.469
          - type: mrr_at_5
            value: 79.633
          - type: ndcg_at_1
            value: 72.392
          - type: ndcg_at_10
            value: 83.651
          - type: ndcg_at_100
            value: 84.749
          - type: ndcg_at_1000
            value: 84.83000000000001
          - type: ndcg_at_3
            value: 80.253
          - type: ndcg_at_5
            value: 82.485
          - type: precision_at_1
            value: 72.392
          - type: precision_at_10
            value: 9.557
          - type: precision_at_100
            value: 1.004
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 28.732000000000003
          - type: precision_at_5
            value: 18.377
          - type: recall_at_1
            value: 72.234
          - type: recall_at_10
            value: 94.573
          - type: recall_at_100
            value: 99.368
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 85.669
          - type: recall_at_5
            value: 91.01700000000001
      - task:
          type: Retrieval
        dataset:
          name: MTEB DuRetrieval
          type: C-MTEB/DuRetrieval
          config: default
          split: dev
          revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
        metrics:
          - type: map_at_1
            value: 26.173999999999996
          - type: map_at_10
            value: 80.04
          - type: map_at_100
            value: 82.94500000000001
          - type: map_at_1000
            value: 82.98100000000001
          - type: map_at_3
            value: 55.562999999999995
          - type: map_at_5
            value: 69.89800000000001
          - type: mrr_at_1
            value: 89.5
          - type: mrr_at_10
            value: 92.996
          - type: mrr_at_100
            value: 93.06400000000001
          - type: mrr_at_1000
            value: 93.065
          - type: mrr_at_3
            value: 92.658
          - type: mrr_at_5
            value: 92.84599999999999
          - type: ndcg_at_1
            value: 89.5
          - type: ndcg_at_10
            value: 87.443
          - type: ndcg_at_100
            value: 90.253
          - type: ndcg_at_1000
            value: 90.549
          - type: ndcg_at_3
            value: 85.874
          - type: ndcg_at_5
            value: 84.842
          - type: precision_at_1
            value: 89.5
          - type: precision_at_10
            value: 41.805
          - type: precision_at_100
            value: 4.827
          - type: precision_at_1000
            value: 0.49
          - type: precision_at_3
            value: 76.85
          - type: precision_at_5
            value: 64.8
          - type: recall_at_1
            value: 26.173999999999996
          - type: recall_at_10
            value: 89.101
          - type: recall_at_100
            value: 98.08099999999999
          - type: recall_at_1000
            value: 99.529
          - type: recall_at_3
            value: 57.902
          - type: recall_at_5
            value: 74.602
      - task:
          type: Retrieval
        dataset:
          name: MTEB EcomRetrieval
          type: C-MTEB/EcomRetrieval
          config: default
          split: dev
          revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
        metrics:
          - type: map_at_1
            value: 56.10000000000001
          - type: map_at_10
            value: 66.15299999999999
          - type: map_at_100
            value: 66.625
          - type: map_at_1000
            value: 66.636
          - type: map_at_3
            value: 63.632999999999996
          - type: map_at_5
            value: 65.293
          - type: mrr_at_1
            value: 56.10000000000001
          - type: mrr_at_10
            value: 66.15299999999999
          - type: mrr_at_100
            value: 66.625
          - type: mrr_at_1000
            value: 66.636
          - type: mrr_at_3
            value: 63.632999999999996
          - type: mrr_at_5
            value: 65.293
          - type: ndcg_at_1
            value: 56.10000000000001
          - type: ndcg_at_10
            value: 71.146
          - type: ndcg_at_100
            value: 73.27799999999999
          - type: ndcg_at_1000
            value: 73.529
          - type: ndcg_at_3
            value: 66.09
          - type: ndcg_at_5
            value: 69.08999999999999
          - type: precision_at_1
            value: 56.10000000000001
          - type: precision_at_10
            value: 8.68
          - type: precision_at_100
            value: 0.964
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 24.4
          - type: precision_at_5
            value: 16.1
          - type: recall_at_1
            value: 56.10000000000001
          - type: recall_at_10
            value: 86.8
          - type: recall_at_100
            value: 96.39999999999999
          - type: recall_at_1000
            value: 98.3
          - type: recall_at_3
            value: 73.2
          - type: recall_at_5
            value: 80.5
      - task:
          type: Classification
        dataset:
          name: MTEB IFlyTek
          type: C-MTEB/IFlyTek-classification
          config: default
          split: validation
          revision: 421605374b29664c5fc098418fe20ada9bd55f8a
        metrics:
          - type: accuracy
            value: 54.52096960369373
          - type: f1
            value: 40.930845295808695
      - task:
          type: Classification
        dataset:
          name: MTEB JDReview
          type: C-MTEB/JDReview-classification
          config: default
          split: test
          revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
        metrics:
          - type: accuracy
            value: 86.51031894934334
          - type: ap
            value: 55.9516014323483
          - type: f1
            value: 81.54813679326381
      - task:
          type: STS
        dataset:
          name: MTEB LCQMC
          type: C-MTEB/LCQMC
          config: default
          split: test
          revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
        metrics:
          - type: cos_sim_pearson
            value: 69.67437838574276
          - type: cos_sim_spearman
            value: 73.81314174653045
          - type: euclidean_pearson
            value: 72.63430276680275
          - type: euclidean_spearman
            value: 73.81358736777001
          - type: manhattan_pearson
            value: 72.58743833842829
          - type: manhattan_spearman
            value: 73.7590419009179
      - task:
          type: Reranking
        dataset:
          name: MTEB MMarcoReranking
          type: C-MTEB/Mmarco-reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 31.648613483640254
          - type: mrr
            value: 30.37420634920635
      - task:
          type: Retrieval
        dataset:
          name: MTEB MMarcoRetrieval
          type: C-MTEB/MMarcoRetrieval
          config: default
          split: dev
          revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
        metrics:
          - type: map_at_1
            value: 73.28099999999999
          - type: map_at_10
            value: 81.977
          - type: map_at_100
            value: 82.222
          - type: map_at_1000
            value: 82.22699999999999
          - type: map_at_3
            value: 80.441
          - type: map_at_5
            value: 81.46600000000001
          - type: mrr_at_1
            value: 75.673
          - type: mrr_at_10
            value: 82.41000000000001
          - type: mrr_at_100
            value: 82.616
          - type: mrr_at_1000
            value: 82.621
          - type: mrr_at_3
            value: 81.094
          - type: mrr_at_5
            value: 81.962
          - type: ndcg_at_1
            value: 75.673
          - type: ndcg_at_10
            value: 85.15599999999999
          - type: ndcg_at_100
            value: 86.151
          - type: ndcg_at_1000
            value: 86.26899999999999
          - type: ndcg_at_3
            value: 82.304
          - type: ndcg_at_5
            value: 84.009
          - type: precision_at_1
            value: 75.673
          - type: precision_at_10
            value: 10.042
          - type: precision_at_100
            value: 1.052
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 30.673000000000002
          - type: precision_at_5
            value: 19.326999999999998
          - type: recall_at_1
            value: 73.28099999999999
          - type: recall_at_10
            value: 94.446
          - type: recall_at_100
            value: 98.737
          - type: recall_at_1000
            value: 99.649
          - type: recall_at_3
            value: 86.984
          - type: recall_at_5
            value: 91.024
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (zh-CN)
          type: mteb/amazon_massive_intent
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 81.08607935440484
          - type: f1
            value: 78.24879986066307
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (zh-CN)
          type: mteb/amazon_massive_scenario
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 86.05917955615332
          - type: f1
            value: 85.05279279434997
      - task:
          type: Retrieval
        dataset:
          name: MTEB MedicalRetrieval
          type: C-MTEB/MedicalRetrieval
          config: default
          split: dev
          revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
        metrics:
          - type: map_at_1
            value: 56.2
          - type: map_at_10
            value: 62.57899999999999
          - type: map_at_100
            value: 63.154999999999994
          - type: map_at_1000
            value: 63.193
          - type: map_at_3
            value: 61.217
          - type: map_at_5
            value: 62.012
          - type: mrr_at_1
            value: 56.3
          - type: mrr_at_10
            value: 62.629000000000005
          - type: mrr_at_100
            value: 63.205999999999996
          - type: mrr_at_1000
            value: 63.244
          - type: mrr_at_3
            value: 61.267
          - type: mrr_at_5
            value: 62.062
          - type: ndcg_at_1
            value: 56.2
          - type: ndcg_at_10
            value: 65.592
          - type: ndcg_at_100
            value: 68.657
          - type: ndcg_at_1000
            value: 69.671
          - type: ndcg_at_3
            value: 62.808
          - type: ndcg_at_5
            value: 64.24499999999999
          - type: precision_at_1
            value: 56.2
          - type: precision_at_10
            value: 7.5
          - type: precision_at_100
            value: 0.899
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 22.467000000000002
          - type: precision_at_5
            value: 14.180000000000001
          - type: recall_at_1
            value: 56.2
          - type: recall_at_10
            value: 75
          - type: recall_at_100
            value: 89.9
          - type: recall_at_1000
            value: 97.89999999999999
          - type: recall_at_3
            value: 67.4
          - type: recall_at_5
            value: 70.89999999999999
      - task:
          type: Classification
        dataset:
          name: MTEB MultilingualSentiment
          type: C-MTEB/MultilingualSentiment-classification
          config: default
          split: validation
          revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
        metrics:
          - type: accuracy
            value: 76.87666666666667
          - type: f1
            value: 76.7317686219665
      - task:
          type: PairClassification
        dataset:
          name: MTEB Ocnli
          type: C-MTEB/OCNLI
          config: default
          split: validation
          revision: 66e76a618a34d6d565d5538088562851e6daa7ec
        metrics:
          - type: cos_sim_accuracy
            value: 79.64266377910124
          - type: cos_sim_ap
            value: 84.78274442344829
          - type: cos_sim_f1
            value: 81.16947472745292
          - type: cos_sim_precision
            value: 76.47058823529412
          - type: cos_sim_recall
            value: 86.48363252375924
          - type: dot_accuracy
            value: 79.64266377910124
          - type: dot_ap
            value: 84.7851404063692
          - type: dot_f1
            value: 81.16947472745292
          - type: dot_precision
            value: 76.47058823529412
          - type: dot_recall
            value: 86.48363252375924
          - type: euclidean_accuracy
            value: 79.64266377910124
          - type: euclidean_ap
            value: 84.78068373762378
          - type: euclidean_f1
            value: 81.14794656110837
          - type: euclidean_precision
            value: 76.35009310986965
          - type: euclidean_recall
            value: 86.58922914466737
          - type: manhattan_accuracy
            value: 79.48023822414727
          - type: manhattan_ap
            value: 84.72928897427576
          - type: manhattan_f1
            value: 81.32084770823064
          - type: manhattan_precision
            value: 76.24768946395564
          - type: manhattan_recall
            value: 87.11721224920802
          - type: max_accuracy
            value: 79.64266377910124
          - type: max_ap
            value: 84.7851404063692
          - type: max_f1
            value: 81.32084770823064
      - task:
          type: Classification
        dataset:
          name: MTEB OnlineShopping
          type: C-MTEB/OnlineShopping-classification
          config: default
          split: test
          revision: e610f2ebd179a8fda30ae534c3878750a96db120
        metrics:
          - type: accuracy
            value: 94.3
          - type: ap
            value: 92.8664032274438
          - type: f1
            value: 94.29311102997727
      - task:
          type: STS
        dataset:
          name: MTEB PAWSX
          type: C-MTEB/PAWSX
          config: default
          split: test
          revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
        metrics:
          - type: cos_sim_pearson
            value: 48.51392279882909
          - type: cos_sim_spearman
            value: 54.06338895994974
          - type: euclidean_pearson
            value: 52.58480559573412
          - type: euclidean_spearman
            value: 54.06417276612201
          - type: manhattan_pearson
            value: 52.69525121721343
          - type: manhattan_spearman
            value: 54.048147455389675
      - task:
          type: STS
        dataset:
          name: MTEB QBQTC
          type: C-MTEB/QBQTC
          config: default
          split: test
          revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
        metrics:
          - type: cos_sim_pearson
            value: 29.728387290757325
          - type: cos_sim_spearman
            value: 31.366121633635284
          - type: euclidean_pearson
            value: 29.14588368552961
          - type: euclidean_spearman
            value: 31.36764411112844
          - type: manhattan_pearson
            value: 29.63517350523121
          - type: manhattan_spearman
            value: 31.94157020583762
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (zh)
          type: mteb/sts22-crosslingual-sts
          config: zh
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 63.64868296271406
          - type: cos_sim_spearman
            value: 66.12800618164744
          - type: euclidean_pearson
            value: 63.21405767340238
          - type: euclidean_spearman
            value: 66.12786567790748
          - type: manhattan_pearson
            value: 64.04300276525848
          - type: manhattan_spearman
            value: 66.5066857145652
      - task:
          type: STS
        dataset:
          name: MTEB STSB
          type: C-MTEB/STSB
          config: default
          split: test
          revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
        metrics:
          - type: cos_sim_pearson
            value: 81.2302623912794
          - type: cos_sim_spearman
            value: 81.16833673266562
          - type: euclidean_pearson
            value: 79.47647843876024
          - type: euclidean_spearman
            value: 81.16944349524972
          - type: manhattan_pearson
            value: 79.84947238492208
          - type: manhattan_spearman
            value: 81.64626599410026
      - task:
          type: Reranking
        dataset:
          name: MTEB T2Reranking
          type: C-MTEB/T2Reranking
          config: default
          split: dev
          revision: 76631901a18387f85eaa53e5450019b87ad58ef9
        metrics:
          - type: map
            value: 67.80129586475687
          - type: mrr
            value: 77.77402311635554
      - task:
          type: Retrieval
        dataset:
          name: MTEB T2Retrieval
          type: C-MTEB/T2Retrieval
          config: default
          split: dev
          revision: 8731a845f1bf500a4f111cf1070785c793d10e64
        metrics:
          - type: map_at_1
            value: 28.666999999999998
          - type: map_at_10
            value: 81.063
          - type: map_at_100
            value: 84.504
          - type: map_at_1000
            value: 84.552
          - type: map_at_3
            value: 56.897
          - type: map_at_5
            value: 70.073
          - type: mrr_at_1
            value: 92.087
          - type: mrr_at_10
            value: 94.132
          - type: mrr_at_100
            value: 94.19800000000001
          - type: mrr_at_1000
            value: 94.19999999999999
          - type: mrr_at_3
            value: 93.78999999999999
          - type: mrr_at_5
            value: 94.002
          - type: ndcg_at_1
            value: 92.087
          - type: ndcg_at_10
            value: 87.734
          - type: ndcg_at_100
            value: 90.736
          - type: ndcg_at_1000
            value: 91.184
          - type: ndcg_at_3
            value: 88.78
          - type: ndcg_at_5
            value: 87.676
          - type: precision_at_1
            value: 92.087
          - type: precision_at_10
            value: 43.46
          - type: precision_at_100
            value: 5.07
          - type: precision_at_1000
            value: 0.518
          - type: precision_at_3
            value: 77.49000000000001
          - type: precision_at_5
            value: 65.194
          - type: recall_at_1
            value: 28.666999999999998
          - type: recall_at_10
            value: 86.632
          - type: recall_at_100
            value: 96.646
          - type: recall_at_1000
            value: 98.917
          - type: recall_at_3
            value: 58.333999999999996
          - type: recall_at_5
            value: 72.974
      - task:
          type: Classification
        dataset:
          name: MTEB TNews
          type: C-MTEB/TNews-classification
          config: default
          split: validation
          revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
        metrics:
          - type: accuracy
            value: 52.971999999999994
          - type: f1
            value: 50.2898280984929
      - task:
          type: Clustering
        dataset:
          name: MTEB ThuNewsClusteringP2P
          type: C-MTEB/ThuNewsClusteringP2P
          config: default
          split: test
          revision: 5798586b105c0434e4f0fe5e767abe619442cf93
        metrics:
          - type: v_measure
            value: 86.0797948663824
      - task:
          type: Clustering
        dataset:
          name: MTEB ThuNewsClusteringS2S
          type: C-MTEB/ThuNewsClusteringS2S
          config: default
          split: test
          revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
        metrics:
          - type: v_measure
            value: 85.10759092255017
      - task:
          type: Retrieval
        dataset:
          name: MTEB VideoRetrieval
          type: C-MTEB/VideoRetrieval
          config: default
          split: dev
          revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
        metrics:
          - type: map_at_1
            value: 65.60000000000001
          - type: map_at_10
            value: 74.773
          - type: map_at_100
            value: 75.128
          - type: map_at_1000
            value: 75.136
          - type: map_at_3
            value: 73.05
          - type: map_at_5
            value: 74.13499999999999
          - type: mrr_at_1
            value: 65.60000000000001
          - type: mrr_at_10
            value: 74.773
          - type: mrr_at_100
            value: 75.128
          - type: mrr_at_1000
            value: 75.136
          - type: mrr_at_3
            value: 73.05
          - type: mrr_at_5
            value: 74.13499999999999
          - type: ndcg_at_1
            value: 65.60000000000001
          - type: ndcg_at_10
            value: 78.84299999999999
          - type: ndcg_at_100
            value: 80.40899999999999
          - type: ndcg_at_1000
            value: 80.57
          - type: ndcg_at_3
            value: 75.40599999999999
          - type: ndcg_at_5
            value: 77.351
          - type: precision_at_1
            value: 65.60000000000001
          - type: precision_at_10
            value: 9.139999999999999
          - type: precision_at_100
            value: 0.984
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 27.400000000000002
          - type: precision_at_5
            value: 17.380000000000003
          - type: recall_at_1
            value: 65.60000000000001
          - type: recall_at_10
            value: 91.4
          - type: recall_at_100
            value: 98.4
          - type: recall_at_1000
            value: 99.6
          - type: recall_at_3
            value: 82.19999999999999
          - type: recall_at_5
            value: 86.9
      - task:
          type: Classification
        dataset:
          name: MTEB Waimai
          type: C-MTEB/waimai-classification
          config: default
          split: test
          revision: 339287def212450dcaa9df8c22bf93e9980c7023
        metrics:
          - type: accuracy
            value: 89.47
          - type: ap
            value: 75.59561751845389
          - type: f1
            value: 87.95207751382563
      - task:
          type: Clustering
        dataset:
          name: MTEB AlloProfClusteringP2P
          type: lyon-nlp/alloprof
          config: default
          split: test
          revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
        metrics:
          - type: v_measure
            value: 76.05592323841036
          - type: v_measure
            value: 64.51718058866508
      - task:
          type: Reranking
        dataset:
          name: MTEB AlloprofReranking
          type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
          config: default
          split: test
          revision: 666fdacebe0291776e86f29345663dfaf80a0db9
        metrics:
          - type: map
            value: 73.08278490943373
          - type: mrr
            value: 74.66561454570449
      - task:
          type: Retrieval
        dataset:
          name: MTEB AlloprofRetrieval
          type: lyon-nlp/alloprof
          config: default
          split: test
          revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
        metrics:
          - type: map_at_1
            value: 38.912
          - type: map_at_10
            value: 52.437999999999995
          - type: map_at_100
            value: 53.38
          - type: map_at_1000
            value: 53.427
          - type: map_at_3
            value: 48.879
          - type: map_at_5
            value: 50.934000000000005
          - type: mrr_at_1
            value: 44.085
          - type: mrr_at_10
            value: 55.337
          - type: mrr_at_100
            value: 56.016999999999996
          - type: mrr_at_1000
            value: 56.043
          - type: mrr_at_3
            value: 52.55499999999999
          - type: mrr_at_5
            value: 54.20399999999999
          - type: ndcg_at_1
            value: 44.085
          - type: ndcg_at_10
            value: 58.876
          - type: ndcg_at_100
            value: 62.714000000000006
          - type: ndcg_at_1000
            value: 63.721000000000004
          - type: ndcg_at_3
            value: 52.444
          - type: ndcg_at_5
            value: 55.692
          - type: precision_at_1
            value: 44.085
          - type: precision_at_10
            value: 9.21
          - type: precision_at_100
            value: 1.164
          - type: precision_at_1000
            value: 0.128
          - type: precision_at_3
            value: 23.043
          - type: precision_at_5
            value: 15.898000000000001
          - type: recall_at_1
            value: 38.912
          - type: recall_at_10
            value: 75.577
          - type: recall_at_100
            value: 92.038
          - type: recall_at_1000
            value: 99.325
          - type: recall_at_3
            value: 58.592
          - type: recall_at_5
            value: 66.235
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (fr)
          type: mteb/amazon_reviews_multi
          config: fr
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 55.532000000000004
          - type: f1
            value: 52.5783943471605
      - task:
          type: Retrieval
        dataset:
          name: MTEB BSARDRetrieval
          type: maastrichtlawtech/bsard
          config: default
          split: test
          revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
        metrics:
          - type: map_at_1
            value: 8.108
          - type: map_at_10
            value: 14.710999999999999
          - type: map_at_100
            value: 15.891
          - type: map_at_1000
            value: 15.983
          - type: map_at_3
            value: 12.237
          - type: map_at_5
            value: 13.679
          - type: mrr_at_1
            value: 8.108
          - type: mrr_at_10
            value: 14.710999999999999
          - type: mrr_at_100
            value: 15.891
          - type: mrr_at_1000
            value: 15.983
          - type: mrr_at_3
            value: 12.237
          - type: mrr_at_5
            value: 13.679
          - type: ndcg_at_1
            value: 8.108
          - type: ndcg_at_10
            value: 18.796
          - type: ndcg_at_100
            value: 25.098
          - type: ndcg_at_1000
            value: 27.951999999999998
          - type: ndcg_at_3
            value: 13.712
          - type: ndcg_at_5
            value: 16.309
          - type: precision_at_1
            value: 8.108
          - type: precision_at_10
            value: 3.198
          - type: precision_at_100
            value: 0.626
          - type: precision_at_1000
            value: 0.086
          - type: precision_at_3
            value: 6.006
          - type: precision_at_5
            value: 4.865
          - type: recall_at_1
            value: 8.108
          - type: recall_at_10
            value: 31.982
          - type: recall_at_100
            value: 62.613
          - type: recall_at_1000
            value: 86.036
          - type: recall_at_3
            value: 18.018
          - type: recall_at_5
            value: 24.324
      - task:
          type: Clustering
        dataset:
          name: MTEB HALClusteringS2S
          type: lyon-nlp/clustering-hal-s2s
          config: default
          split: test
          revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
        metrics:
          - type: v_measure
            value: 30.833269778867116
      - task:
          type: Clustering
        dataset:
          name: MTEB MLSUMClusteringP2P
          type: mlsum
          config: default
          split: test
          revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
        metrics:
          - type: v_measure
            value: 50.0281928004713
          - type: v_measure
            value: 43.699961510636534
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (fr)
          type: mteb/mtop_domain
          config: fr
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 96.68963357344191
          - type: f1
            value: 96.45175170820961
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (fr)
          type: mteb/mtop_intent
          config: fr
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 87.46946445349202
          - type: f1
            value: 65.79860440988624
      - task:
          type: Classification
        dataset:
          name: MTEB MasakhaNEWSClassification (fra)
          type: masakhane/masakhanews
          config: fra
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: accuracy
            value: 82.60663507109005
          - type: f1
            value: 77.20462646604777
      - task:
          type: Clustering
        dataset:
          name: MTEB MasakhaNEWSClusteringP2P (fra)
          type: masakhane/masakhanews
          config: fra
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: v_measure
            value: 60.19311264967803
          - type: v_measure
            value: 63.6235764409785
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (fr)
          type: mteb/amazon_massive_intent
          config: fr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 81.65097511768661
          - type: f1
            value: 78.77796091490924
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (fr)
          type: mteb/amazon_massive_scenario
          config: fr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 86.64425016812373
          - type: f1
            value: 85.4912728670017
      - task:
          type: Retrieval
        dataset:
          name: MTEB MintakaRetrieval (fr)
          type: jinaai/mintakaqa
          config: fr
          split: test
          revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
        metrics:
          - type: map_at_1
            value: 35.913000000000004
          - type: map_at_10
            value: 48.147
          - type: map_at_100
            value: 48.91
          - type: map_at_1000
            value: 48.949
          - type: map_at_3
            value: 45.269999999999996
          - type: map_at_5
            value: 47.115
          - type: mrr_at_1
            value: 35.913000000000004
          - type: mrr_at_10
            value: 48.147
          - type: mrr_at_100
            value: 48.91
          - type: mrr_at_1000
            value: 48.949
          - type: mrr_at_3
            value: 45.269999999999996
          - type: mrr_at_5
            value: 47.115
          - type: ndcg_at_1
            value: 35.913000000000004
          - type: ndcg_at_10
            value: 54.03
          - type: ndcg_at_100
            value: 57.839
          - type: ndcg_at_1000
            value: 58.925000000000004
          - type: ndcg_at_3
            value: 48.217999999999996
          - type: ndcg_at_5
            value: 51.56699999999999
          - type: precision_at_1
            value: 35.913000000000004
          - type: precision_at_10
            value: 7.244000000000001
          - type: precision_at_100
            value: 0.9039999999999999
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 18.905
          - type: precision_at_5
            value: 12.981000000000002
          - type: recall_at_1
            value: 35.913000000000004
          - type: recall_at_10
            value: 72.441
          - type: recall_at_100
            value: 90.41799999999999
          - type: recall_at_1000
            value: 99.099
          - type: recall_at_3
            value: 56.716
          - type: recall_at_5
            value: 64.90599999999999
      - task:
          type: PairClassification
        dataset:
          name: MTEB OpusparcusPC (fr)
          type: GEM/opusparcus
          config: fr
          split: test
          revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
        metrics:
          - type: cos_sim_accuracy
            value: 99.90069513406156
          - type: cos_sim_ap
            value: 100
          - type: cos_sim_f1
            value: 99.95032290114257
          - type: cos_sim_precision
            value: 100
          - type: cos_sim_recall
            value: 99.90069513406156
          - type: dot_accuracy
            value: 99.90069513406156
          - type: dot_ap
            value: 100
          - type: dot_f1
            value: 99.95032290114257
          - type: dot_precision
            value: 100
          - type: dot_recall
            value: 99.90069513406156
          - type: euclidean_accuracy
            value: 99.90069513406156
          - type: euclidean_ap
            value: 100
          - type: euclidean_f1
            value: 99.95032290114257
          - type: euclidean_precision
            value: 100
          - type: euclidean_recall
            value: 99.90069513406156
          - type: manhattan_accuracy
            value: 99.90069513406156
          - type: manhattan_ap
            value: 100
          - type: manhattan_f1
            value: 99.95032290114257
          - type: manhattan_precision
            value: 100
          - type: manhattan_recall
            value: 99.90069513406156
          - type: max_accuracy
            value: 99.90069513406156
          - type: max_ap
            value: 100
          - type: max_f1
            value: 99.95032290114257
      - task:
          type: PairClassification
        dataset:
          name: MTEB PawsX (fr)
          type: paws-x
          config: fr
          split: test
          revision: 8a04d940a42cd40658986fdd8e3da561533a3646
        metrics:
          - type: cos_sim_accuracy
            value: 75.25
          - type: cos_sim_ap
            value: 80.86376001270014
          - type: cos_sim_f1
            value: 73.65945437441204
          - type: cos_sim_precision
            value: 64.02289452166802
          - type: cos_sim_recall
            value: 86.71096345514951
          - type: dot_accuracy
            value: 75.25
          - type: dot_ap
            value: 80.93686107633002
          - type: dot_f1
            value: 73.65945437441204
          - type: dot_precision
            value: 64.02289452166802
          - type: dot_recall
            value: 86.71096345514951
          - type: euclidean_accuracy
            value: 75.25
          - type: euclidean_ap
            value: 80.86379136218862
          - type: euclidean_f1
            value: 73.65945437441204
          - type: euclidean_precision
            value: 64.02289452166802
          - type: euclidean_recall
            value: 86.71096345514951
          - type: manhattan_accuracy
            value: 75.3
          - type: manhattan_ap
            value: 80.87826606097734
          - type: manhattan_f1
            value: 73.68421052631581
          - type: manhattan_precision
            value: 64
          - type: manhattan_recall
            value: 86.82170542635659
          - type: max_accuracy
            value: 75.3
          - type: max_ap
            value: 80.93686107633002
          - type: max_f1
            value: 73.68421052631581
      - task:
          type: STS
        dataset:
          name: MTEB SICKFr
          type: Lajavaness/SICK-fr
          config: default
          split: test
          revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
        metrics:
          - type: cos_sim_pearson
            value: 81.42349425981143
          - type: cos_sim_spearman
            value: 78.90454327031226
          - type: euclidean_pearson
            value: 78.39086497435166
          - type: euclidean_spearman
            value: 78.9046133980509
          - type: manhattan_pearson
            value: 78.63743094286502
          - type: manhattan_spearman
            value: 79.12136348449269
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (fr)
          type: mteb/sts22-crosslingual-sts
          config: fr
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 81.452697919749
          - type: cos_sim_spearman
            value: 82.58116836039301
          - type: euclidean_pearson
            value: 81.04038478932786
          - type: euclidean_spearman
            value: 82.58116836039301
          - type: manhattan_pearson
            value: 81.37075396187771
          - type: manhattan_spearman
            value: 82.73678231355368
      - task:
          type: STS
        dataset:
          name: MTEB STSBenchmarkMultilingualSTS (fr)
          type: stsb_multi_mt
          config: fr
          split: test
          revision: 93d57ef91790589e3ce9c365164337a8a78b7632
        metrics:
          - type: cos_sim_pearson
            value: 85.7419764013806
          - type: cos_sim_spearman
            value: 85.46085808849622
          - type: euclidean_pearson
            value: 83.70449639870063
          - type: euclidean_spearman
            value: 85.46159013076233
          - type: manhattan_pearson
            value: 83.95259510313929
          - type: manhattan_spearman
            value: 85.8029724659458
      - task:
          type: Summarization
        dataset:
          name: MTEB SummEvalFr
          type: lyon-nlp/summarization-summeval-fr-p2p
          config: default
          split: test
          revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
        metrics:
          - type: cos_sim_pearson
            value: 32.61063271753325
          - type: cos_sim_spearman
            value: 31.454589417353603
          - type: dot_pearson
            value: 32.6106288643431
          - type: dot_spearman
            value: 31.454589417353603
      - task:
          type: Reranking
        dataset:
          name: MTEB SyntecReranking
          type: lyon-nlp/mteb-fr-reranking-syntec-s2p
          config: default
          split: test
          revision: b205c5084a0934ce8af14338bf03feb19499c84d
        metrics:
          - type: map
            value: 84.31666666666666
          - type: mrr
            value: 84.31666666666666
      - task:
          type: Retrieval
        dataset:
          name: MTEB SyntecRetrieval
          type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
          config: default
          split: test
          revision: 77f7e271bf4a92b24fce5119f3486b583ca016ff
        metrics:
          - type: map_at_1
            value: 63
          - type: map_at_10
            value: 73.471
          - type: map_at_100
            value: 73.87
          - type: map_at_1000
            value: 73.87
          - type: map_at_3
            value: 70.5
          - type: map_at_5
            value: 73.05
          - type: mrr_at_1
            value: 63
          - type: mrr_at_10
            value: 73.471
          - type: mrr_at_100
            value: 73.87
          - type: mrr_at_1000
            value: 73.87
          - type: mrr_at_3
            value: 70.5
          - type: mrr_at_5
            value: 73.05
          - type: ndcg_at_1
            value: 63
          - type: ndcg_at_10
            value: 78.255
          - type: ndcg_at_100
            value: 79.88
          - type: ndcg_at_1000
            value: 79.88
          - type: ndcg_at_3
            value: 72.702
          - type: ndcg_at_5
            value: 77.264
          - type: precision_at_1
            value: 63
          - type: precision_at_10
            value: 9.3
          - type: precision_at_100
            value: 1
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 26.333000000000002
          - type: precision_at_5
            value: 18
          - type: recall_at_1
            value: 63
          - type: recall_at_10
            value: 93
          - type: recall_at_100
            value: 100
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 79
          - type: recall_at_5
            value: 90
      - task:
          type: Retrieval
        dataset:
          name: MTEB XPQARetrieval (fr)
          type: jinaai/xpqa
          config: fr
          split: test
          revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
        metrics:
          - type: map_at_1
            value: 40.338
          - type: map_at_10
            value: 61.927
          - type: map_at_100
            value: 63.361999999999995
          - type: map_at_1000
            value: 63.405
          - type: map_at_3
            value: 55.479
          - type: map_at_5
            value: 59.732
          - type: mrr_at_1
            value: 63.551
          - type: mrr_at_10
            value: 71.006
          - type: mrr_at_100
            value: 71.501
          - type: mrr_at_1000
            value: 71.509
          - type: mrr_at_3
            value: 69.07
          - type: mrr_at_5
            value: 70.165
          - type: ndcg_at_1
            value: 63.551
          - type: ndcg_at_10
            value: 68.297
          - type: ndcg_at_100
            value: 73.13199999999999
          - type: ndcg_at_1000
            value: 73.751
          - type: ndcg_at_3
            value: 62.999
          - type: ndcg_at_5
            value: 64.89
          - type: precision_at_1
            value: 63.551
          - type: precision_at_10
            value: 15.661
          - type: precision_at_100
            value: 1.9789999999999999
          - type: precision_at_1000
            value: 0.207
          - type: precision_at_3
            value: 38.273
          - type: precision_at_5
            value: 27.61
          - type: recall_at_1
            value: 40.338
          - type: recall_at_10
            value: 77.267
          - type: recall_at_100
            value: 95.892
          - type: recall_at_1000
            value: 99.75500000000001
          - type: recall_at_3
            value: 60.36
          - type: recall_at_5
            value: 68.825
      - task:
          type: Clustering
        dataset:
          name: MTEB 8TagsClustering
          type: PL-MTEB/8tags-clustering
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 51.36126303874126
      - task:
          type: Classification
        dataset:
          name: MTEB AllegroReviews
          type: PL-MTEB/allegro-reviews
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 67.13717693836979
          - type: f1
            value: 57.27609848003782
      - task:
          type: Retrieval
        dataset:
          name: MTEB ArguAna-PL
          type: clarin-knext/arguana-pl
          config: default
          split: test
          revision: 63fc86750af76253e8c760fc9e534bbf24d260a2
        metrics:
          - type: map_at_1
            value: 35.276999999999994
          - type: map_at_10
            value: 51.086
          - type: map_at_100
            value: 51.788000000000004
          - type: map_at_1000
            value: 51.791
          - type: map_at_3
            value: 46.147
          - type: map_at_5
            value: 49.078
          - type: mrr_at_1
            value: 35.917
          - type: mrr_at_10
            value: 51.315999999999995
          - type: mrr_at_100
            value: 52.018
          - type: mrr_at_1000
            value: 52.022
          - type: mrr_at_3
            value: 46.349000000000004
          - type: mrr_at_5
            value: 49.297000000000004
          - type: ndcg_at_1
            value: 35.276999999999994
          - type: ndcg_at_10
            value: 59.870999999999995
          - type: ndcg_at_100
            value: 62.590999999999994
          - type: ndcg_at_1000
            value: 62.661
          - type: ndcg_at_3
            value: 49.745
          - type: ndcg_at_5
            value: 55.067
          - type: precision_at_1
            value: 35.276999999999994
          - type: precision_at_10
            value: 8.791
          - type: precision_at_100
            value: 0.991
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 20.057
          - type: precision_at_5
            value: 14.637
          - type: recall_at_1
            value: 35.276999999999994
          - type: recall_at_10
            value: 87.909
          - type: recall_at_100
            value: 99.14699999999999
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 60.171
          - type: recall_at_5
            value: 73.18599999999999
      - task:
          type: Classification
        dataset:
          name: MTEB CBD
          type: PL-MTEB/cbd
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 78.03000000000002
          - type: ap
            value: 29.12548553897622
          - type: f1
            value: 66.54857118886073
      - task:
          type: PairClassification
        dataset:
          name: MTEB CDSC-E
          type: PL-MTEB/cdsce-pairclassification
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 89
          - type: cos_sim_ap
            value: 76.75437826834582
          - type: cos_sim_f1
            value: 66.4850136239782
          - type: cos_sim_precision
            value: 68.92655367231639
          - type: cos_sim_recall
            value: 64.21052631578948
          - type: dot_accuracy
            value: 89
          - type: dot_ap
            value: 76.75437826834582
          - type: dot_f1
            value: 66.4850136239782
          - type: dot_precision
            value: 68.92655367231639
          - type: dot_recall
            value: 64.21052631578948
          - type: euclidean_accuracy
            value: 89
          - type: euclidean_ap
            value: 76.75437826834582
          - type: euclidean_f1
            value: 66.4850136239782
          - type: euclidean_precision
            value: 68.92655367231639
          - type: euclidean_recall
            value: 64.21052631578948
          - type: manhattan_accuracy
            value: 89
          - type: manhattan_ap
            value: 76.66074220647083
          - type: manhattan_f1
            value: 66.47058823529412
          - type: manhattan_precision
            value: 75.33333333333333
          - type: manhattan_recall
            value: 59.473684210526315
          - type: max_accuracy
            value: 89
          - type: max_ap
            value: 76.75437826834582
          - type: max_f1
            value: 66.4850136239782
      - task:
          type: STS
        dataset:
          name: MTEB CDSC-R
          type: PL-MTEB/cdscr-sts
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 93.12903172428328
          - type: cos_sim_spearman
            value: 92.66381487060741
          - type: euclidean_pearson
            value: 90.37278396708922
          - type: euclidean_spearman
            value: 92.66381487060741
          - type: manhattan_pearson
            value: 90.32503296540962
          - type: manhattan_spearman
            value: 92.6902938354313
      - task:
          type: Retrieval
        dataset:
          name: MTEB DBPedia-PL
          type: clarin-knext/dbpedia-pl
          config: default
          split: test
          revision: 76afe41d9af165cc40999fcaa92312b8b012064a
        metrics:
          - type: map_at_1
            value: 8.83
          - type: map_at_10
            value: 18.326
          - type: map_at_100
            value: 26.496
          - type: map_at_1000
            value: 28.455000000000002
          - type: map_at_3
            value: 12.933
          - type: map_at_5
            value: 15.168000000000001
          - type: mrr_at_1
            value: 66
          - type: mrr_at_10
            value: 72.76700000000001
          - type: mrr_at_100
            value: 73.203
          - type: mrr_at_1000
            value: 73.219
          - type: mrr_at_3
            value: 71.458
          - type: mrr_at_5
            value: 72.246
          - type: ndcg_at_1
            value: 55.375
          - type: ndcg_at_10
            value: 41.3
          - type: ndcg_at_100
            value: 45.891
          - type: ndcg_at_1000
            value: 52.905
          - type: ndcg_at_3
            value: 46.472
          - type: ndcg_at_5
            value: 43.734
          - type: precision_at_1
            value: 66
          - type: precision_at_10
            value: 33.074999999999996
          - type: precision_at_100
            value: 11.094999999999999
          - type: precision_at_1000
            value: 2.374
          - type: precision_at_3
            value: 48.583
          - type: precision_at_5
            value: 42
          - type: recall_at_1
            value: 8.83
          - type: recall_at_10
            value: 22.587
          - type: recall_at_100
            value: 50.61600000000001
          - type: recall_at_1000
            value: 73.559
          - type: recall_at_3
            value: 13.688
          - type: recall_at_5
            value: 16.855
      - task:
          type: Retrieval
        dataset:
          name: MTEB FiQA-PL
          type: clarin-knext/fiqa-pl
          config: default
          split: test
          revision: 2e535829717f8bf9dc829b7f911cc5bbd4e6608e
        metrics:
          - type: map_at_1
            value: 20.587
          - type: map_at_10
            value: 33.095
          - type: map_at_100
            value: 35.24
          - type: map_at_1000
            value: 35.429
          - type: map_at_3
            value: 28.626
          - type: map_at_5
            value: 31.136999999999997
          - type: mrr_at_1
            value: 40.586
          - type: mrr_at_10
            value: 49.033
          - type: mrr_at_100
            value: 49.952999999999996
          - type: mrr_at_1000
            value: 49.992
          - type: mrr_at_3
            value: 46.553
          - type: mrr_at_5
            value: 48.035
          - type: ndcg_at_1
            value: 40.586
          - type: ndcg_at_10
            value: 41.046
          - type: ndcg_at_100
            value: 48.586
          - type: ndcg_at_1000
            value: 51.634
          - type: ndcg_at_3
            value: 36.773
          - type: ndcg_at_5
            value: 38.389
          - type: precision_at_1
            value: 40.586
          - type: precision_at_10
            value: 11.466
          - type: precision_at_100
            value: 1.909
          - type: precision_at_1000
            value: 0.245
          - type: precision_at_3
            value: 24.434
          - type: precision_at_5
            value: 18.426000000000002
          - type: recall_at_1
            value: 20.587
          - type: recall_at_10
            value: 47.986000000000004
          - type: recall_at_100
            value: 75.761
          - type: recall_at_1000
            value: 94.065
          - type: recall_at_3
            value: 33.339
          - type: recall_at_5
            value: 39.765
      - task:
          type: Retrieval
        dataset:
          name: MTEB HotpotQA-PL
          type: clarin-knext/hotpotqa-pl
          config: default
          split: test
          revision: a0bd479ac97b4ccb5bd6ce320c415d0bb4beb907
        metrics:
          - type: map_at_1
            value: 40.878
          - type: map_at_10
            value: 58.775999999999996
          - type: map_at_100
            value: 59.632
          - type: map_at_1000
            value: 59.707
          - type: map_at_3
            value: 56.074
          - type: map_at_5
            value: 57.629
          - type: mrr_at_1
            value: 81.756
          - type: mrr_at_10
            value: 86.117
          - type: mrr_at_100
            value: 86.299
          - type: mrr_at_1000
            value: 86.30600000000001
          - type: mrr_at_3
            value: 85.345
          - type: mrr_at_5
            value: 85.832
          - type: ndcg_at_1
            value: 81.756
          - type: ndcg_at_10
            value: 67.608
          - type: ndcg_at_100
            value: 70.575
          - type: ndcg_at_1000
            value: 71.99600000000001
          - type: ndcg_at_3
            value: 63.723
          - type: ndcg_at_5
            value: 65.70700000000001
          - type: precision_at_1
            value: 81.756
          - type: precision_at_10
            value: 13.619
          - type: precision_at_100
            value: 1.5939999999999999
          - type: precision_at_1000
            value: 0.178
          - type: precision_at_3
            value: 39.604
          - type: precision_at_5
            value: 25.332
          - type: recall_at_1
            value: 40.878
          - type: recall_at_10
            value: 68.096
          - type: recall_at_100
            value: 79.696
          - type: recall_at_1000
            value: 89.082
          - type: recall_at_3
            value: 59.406000000000006
          - type: recall_at_5
            value: 63.329
      - task:
          type: Retrieval
        dataset:
          name: MTEB MSMARCO-PL
          type: clarin-knext/msmarco-pl
          config: default
          split: test
          revision: 8634c07806d5cce3a6138e260e59b81760a0a640
        metrics:
          - type: map_at_1
            value: 2.1839999999999997
          - type: map_at_10
            value: 11.346
          - type: map_at_100
            value: 30.325000000000003
          - type: map_at_1000
            value: 37.806
          - type: map_at_3
            value: 4.842
          - type: map_at_5
            value: 6.891
          - type: mrr_at_1
            value: 86.047
          - type: mrr_at_10
            value: 89.14699999999999
          - type: mrr_at_100
            value: 89.46600000000001
          - type: mrr_at_1000
            value: 89.46600000000001
          - type: mrr_at_3
            value: 89.14699999999999
          - type: mrr_at_5
            value: 89.14699999999999
          - type: ndcg_at_1
            value: 67.829
          - type: ndcg_at_10
            value: 62.222
          - type: ndcg_at_100
            value: 55.337
          - type: ndcg_at_1000
            value: 64.076
          - type: ndcg_at_3
            value: 68.12700000000001
          - type: ndcg_at_5
            value: 64.987
          - type: precision_at_1
            value: 86.047
          - type: precision_at_10
            value: 69.535
          - type: precision_at_100
            value: 32.93
          - type: precision_at_1000
            value: 6.6049999999999995
          - type: precision_at_3
            value: 79.845
          - type: precision_at_5
            value: 75.349
          - type: recall_at_1
            value: 2.1839999999999997
          - type: recall_at_10
            value: 12.866
          - type: recall_at_100
            value: 43.505
          - type: recall_at_1000
            value: 72.366
          - type: recall_at_3
            value: 4.947
          - type: recall_at_5
            value: 7.192
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (pl)
          type: mteb/amazon_massive_intent
          config: pl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 80.75319435104238
          - type: f1
            value: 77.58961444860606
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (pl)
          type: mteb/amazon_massive_scenario
          config: pl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 85.54472091459313
          - type: f1
            value: 84.29498563572106
      - task:
          type: Retrieval
        dataset:
          name: MTEB NFCorpus-PL
          type: clarin-knext/nfcorpus-pl
          config: default
          split: test
          revision: 9a6f9567fda928260afed2de480d79c98bf0bec0
        metrics:
          - type: map_at_1
            value: 4.367
          - type: map_at_10
            value: 10.38
          - type: map_at_100
            value: 13.516
          - type: map_at_1000
            value: 14.982000000000001
          - type: map_at_3
            value: 7.367
          - type: map_at_5
            value: 8.59
          - type: mrr_at_1
            value: 41.486000000000004
          - type: mrr_at_10
            value: 48.886
          - type: mrr_at_100
            value: 49.657000000000004
          - type: mrr_at_1000
            value: 49.713
          - type: mrr_at_3
            value: 46.904
          - type: mrr_at_5
            value: 48.065000000000005
          - type: ndcg_at_1
            value: 40.402
          - type: ndcg_at_10
            value: 30.885
          - type: ndcg_at_100
            value: 28.393
          - type: ndcg_at_1000
            value: 37.428
          - type: ndcg_at_3
            value: 35.394999999999996
          - type: ndcg_at_5
            value: 33.391999999999996
          - type: precision_at_1
            value: 41.486000000000004
          - type: precision_at_10
            value: 23.437
          - type: precision_at_100
            value: 7.638
          - type: precision_at_1000
            value: 2.0389999999999997
          - type: precision_at_3
            value: 32.817
          - type: precision_at_5
            value: 28.915999999999997
          - type: recall_at_1
            value: 4.367
          - type: recall_at_10
            value: 14.655000000000001
          - type: recall_at_100
            value: 29.665999999999997
          - type: recall_at_1000
            value: 62.073
          - type: recall_at_3
            value: 8.51
          - type: recall_at_5
            value: 10.689
      - task:
          type: Retrieval
        dataset:
          name: MTEB NQ-PL
          type: clarin-knext/nq-pl
          config: default
          split: test
          revision: f171245712cf85dd4700b06bef18001578d0ca8d
        metrics:
          - type: map_at_1
            value: 28.616000000000003
          - type: map_at_10
            value: 41.626000000000005
          - type: map_at_100
            value: 42.689
          - type: map_at_1000
            value: 42.733
          - type: map_at_3
            value: 37.729
          - type: map_at_5
            value: 39.879999999999995
          - type: mrr_at_1
            value: 32.068000000000005
          - type: mrr_at_10
            value: 44.029
          - type: mrr_at_100
            value: 44.87
          - type: mrr_at_1000
            value: 44.901
          - type: mrr_at_3
            value: 40.687
          - type: mrr_at_5
            value: 42.625
          - type: ndcg_at_1
            value: 32.068000000000005
          - type: ndcg_at_10
            value: 48.449999999999996
          - type: ndcg_at_100
            value: 53.13
          - type: ndcg_at_1000
            value: 54.186
          - type: ndcg_at_3
            value: 40.983999999999995
          - type: ndcg_at_5
            value: 44.628
          - type: precision_at_1
            value: 32.068000000000005
          - type: precision_at_10
            value: 7.9750000000000005
          - type: precision_at_100
            value: 1.061
          - type: precision_at_1000
            value: 0.116
          - type: precision_at_3
            value: 18.404999999999998
          - type: precision_at_5
            value: 13.111
          - type: recall_at_1
            value: 28.616000000000003
          - type: recall_at_10
            value: 66.956
          - type: recall_at_100
            value: 87.657
          - type: recall_at_1000
            value: 95.548
          - type: recall_at_3
            value: 47.453
          - type: recall_at_5
            value: 55.87800000000001
      - task:
          type: Classification
        dataset:
          name: MTEB PAC
          type: laugustyniak/abusive-clauses-pl
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 69.04141326382856
          - type: ap
            value: 77.47589122111044
          - type: f1
            value: 66.6332277374775
      - task:
          type: PairClassification
        dataset:
          name: MTEB PPC
          type: PL-MTEB/ppc-pairclassification
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 86.4
          - type: cos_sim_ap
            value: 94.1044939667201
          - type: cos_sim_f1
            value: 88.78048780487805
          - type: cos_sim_precision
            value: 87.22044728434504
          - type: cos_sim_recall
            value: 90.39735099337747
          - type: dot_accuracy
            value: 86.4
          - type: dot_ap
            value: 94.1044939667201
          - type: dot_f1
            value: 88.78048780487805
          - type: dot_precision
            value: 87.22044728434504
          - type: dot_recall
            value: 90.39735099337747
          - type: euclidean_accuracy
            value: 86.4
          - type: euclidean_ap
            value: 94.1044939667201
          - type: euclidean_f1
            value: 88.78048780487805
          - type: euclidean_precision
            value: 87.22044728434504
          - type: euclidean_recall
            value: 90.39735099337747
          - type: manhattan_accuracy
            value: 86.4
          - type: manhattan_ap
            value: 94.11438365697387
          - type: manhattan_f1
            value: 88.77968877968877
          - type: manhattan_precision
            value: 87.84440842787681
          - type: manhattan_recall
            value: 89.73509933774835
          - type: max_accuracy
            value: 86.4
          - type: max_ap
            value: 94.11438365697387
          - type: max_f1
            value: 88.78048780487805
      - task:
          type: PairClassification
        dataset:
          name: MTEB PSC
          type: PL-MTEB/psc-pairclassification
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 97.86641929499072
          - type: cos_sim_ap
            value: 99.36904211868182
          - type: cos_sim_f1
            value: 96.56203288490283
          - type: cos_sim_precision
            value: 94.72140762463343
          - type: cos_sim_recall
            value: 98.47560975609755
          - type: dot_accuracy
            value: 97.86641929499072
          - type: dot_ap
            value: 99.36904211868183
          - type: dot_f1
            value: 96.56203288490283
          - type: dot_precision
            value: 94.72140762463343
          - type: dot_recall
            value: 98.47560975609755
          - type: euclidean_accuracy
            value: 97.86641929499072
          - type: euclidean_ap
            value: 99.36904211868183
          - type: euclidean_f1
            value: 96.56203288490283
          - type: euclidean_precision
            value: 94.72140762463343
          - type: euclidean_recall
            value: 98.47560975609755
          - type: manhattan_accuracy
            value: 98.14471243042672
          - type: manhattan_ap
            value: 99.43359540492416
          - type: manhattan_f1
            value: 96.98795180722892
          - type: manhattan_precision
            value: 95.83333333333334
          - type: manhattan_recall
            value: 98.17073170731707
          - type: max_accuracy
            value: 98.14471243042672
          - type: max_ap
            value: 99.43359540492416
          - type: max_f1
            value: 96.98795180722892
      - task:
          type: Classification
        dataset:
          name: MTEB PolEmo2.0-IN
          type: PL-MTEB/polemo2_in
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 89.39058171745152
          - type: f1
            value: 86.8552093529568
      - task:
          type: Classification
        dataset:
          name: MTEB PolEmo2.0-OUT
          type: PL-MTEB/polemo2_out
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 74.97975708502024
          - type: f1
            value: 58.73081628832407
      - task:
          type: Retrieval
        dataset:
          name: MTEB Quora-PL
          type: clarin-knext/quora-pl
          config: default
          split: test
          revision: 0be27e93455051e531182b85e85e425aba12e9d4
        metrics:
          - type: map_at_1
            value: 64.917
          - type: map_at_10
            value: 78.74600000000001
          - type: map_at_100
            value: 79.501
          - type: map_at_1000
            value: 79.524
          - type: map_at_3
            value: 75.549
          - type: map_at_5
            value: 77.495
          - type: mrr_at_1
            value: 74.9
          - type: mrr_at_10
            value: 82.112
          - type: mrr_at_100
            value: 82.314
          - type: mrr_at_1000
            value: 82.317
          - type: mrr_at_3
            value: 80.745
          - type: mrr_at_5
            value: 81.607
          - type: ndcg_at_1
            value: 74.83999999999999
          - type: ndcg_at_10
            value: 83.214
          - type: ndcg_at_100
            value: 84.997
          - type: ndcg_at_1000
            value: 85.207
          - type: ndcg_at_3
            value: 79.547
          - type: ndcg_at_5
            value: 81.46600000000001
          - type: precision_at_1
            value: 74.83999999999999
          - type: precision_at_10
            value: 12.822
          - type: precision_at_100
            value: 1.506
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 34.903
          - type: precision_at_5
            value: 23.16
          - type: recall_at_1
            value: 64.917
          - type: recall_at_10
            value: 92.27199999999999
          - type: recall_at_100
            value: 98.715
          - type: recall_at_1000
            value: 99.854
          - type: recall_at_3
            value: 82.04599999999999
          - type: recall_at_5
            value: 87.2
      - task:
          type: Retrieval
        dataset:
          name: MTEB SCIDOCS-PL
          type: clarin-knext/scidocs-pl
          config: default
          split: test
          revision: 45452b03f05560207ef19149545f168e596c9337
        metrics:
          - type: map_at_1
            value: 3.51
          - type: map_at_10
            value: 9.046999999999999
          - type: map_at_100
            value: 10.823
          - type: map_at_1000
            value: 11.144
          - type: map_at_3
            value: 6.257
          - type: map_at_5
            value: 7.648000000000001
          - type: mrr_at_1
            value: 17.299999999999997
          - type: mrr_at_10
            value: 27.419
          - type: mrr_at_100
            value: 28.618
          - type: mrr_at_1000
            value: 28.685
          - type: mrr_at_3
            value: 23.817
          - type: mrr_at_5
            value: 25.927
          - type: ndcg_at_1
            value: 17.299999999999997
          - type: ndcg_at_10
            value: 16.084
          - type: ndcg_at_100
            value: 23.729
          - type: ndcg_at_1000
            value: 29.476999999999997
          - type: ndcg_at_3
            value: 14.327000000000002
          - type: ndcg_at_5
            value: 13.017999999999999
          - type: precision_at_1
            value: 17.299999999999997
          - type: precision_at_10
            value: 8.63
          - type: precision_at_100
            value: 1.981
          - type: precision_at_1000
            value: 0.336
          - type: precision_at_3
            value: 13.4
          - type: precision_at_5
            value: 11.700000000000001
          - type: recall_at_1
            value: 3.51
          - type: recall_at_10
            value: 17.518
          - type: recall_at_100
            value: 40.275
          - type: recall_at_1000
            value: 68.203
          - type: recall_at_3
            value: 8.155
          - type: recall_at_5
            value: 11.875
      - task:
          type: PairClassification
        dataset:
          name: MTEB SICK-E-PL
          type: PL-MTEB/sicke-pl-pairclassification
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 86.30248675091724
          - type: cos_sim_ap
            value: 83.6756734006714
          - type: cos_sim_f1
            value: 74.97367497367497
          - type: cos_sim_precision
            value: 73.91003460207612
          - type: cos_sim_recall
            value: 76.06837606837607
          - type: dot_accuracy
            value: 86.30248675091724
          - type: dot_ap
            value: 83.6756734006714
          - type: dot_f1
            value: 74.97367497367497
          - type: dot_precision
            value: 73.91003460207612
          - type: dot_recall
            value: 76.06837606837607
          - type: euclidean_accuracy
            value: 86.30248675091724
          - type: euclidean_ap
            value: 83.67566984333091
          - type: euclidean_f1
            value: 74.97367497367497
          - type: euclidean_precision
            value: 73.91003460207612
          - type: euclidean_recall
            value: 76.06837606837607
          - type: manhattan_accuracy
            value: 86.28210354667753
          - type: manhattan_ap
            value: 83.64216119130171
          - type: manhattan_f1
            value: 74.92152075340078
          - type: manhattan_precision
            value: 73.4107997265892
          - type: manhattan_recall
            value: 76.49572649572649
          - type: max_accuracy
            value: 86.30248675091724
          - type: max_ap
            value: 83.6756734006714
          - type: max_f1
            value: 74.97367497367497
      - task:
          type: STS
        dataset:
          name: MTEB SICK-R-PL
          type: PL-MTEB/sickr-pl-sts
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 82.23295940859121
          - type: cos_sim_spearman
            value: 78.89329160768719
          - type: euclidean_pearson
            value: 79.56019107076818
          - type: euclidean_spearman
            value: 78.89330209904084
          - type: manhattan_pearson
            value: 79.76098513973719
          - type: manhattan_spearman
            value: 79.05490162570123
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (pl)
          type: mteb/sts22-crosslingual-sts
          config: pl
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 37.732606308062486
          - type: cos_sim_spearman
            value: 41.01645667030284
          - type: euclidean_pearson
            value: 26.61722556367085
          - type: euclidean_spearman
            value: 41.01645667030284
          - type: manhattan_pearson
            value: 26.60917378970807
          - type: manhattan_spearman
            value: 41.51335727617614
      - task:
          type: Retrieval
        dataset:
          name: MTEB SciFact-PL
          type: clarin-knext/scifact-pl
          config: default
          split: test
          revision: 47932a35f045ef8ed01ba82bf9ff67f6e109207e
        metrics:
          - type: map_at_1
            value: 54.31700000000001
          - type: map_at_10
            value: 65.564
          - type: map_at_100
            value: 66.062
          - type: map_at_1000
            value: 66.08699999999999
          - type: map_at_3
            value: 62.592999999999996
          - type: map_at_5
            value: 63.888
          - type: mrr_at_1
            value: 56.99999999999999
          - type: mrr_at_10
            value: 66.412
          - type: mrr_at_100
            value: 66.85900000000001
          - type: mrr_at_1000
            value: 66.88
          - type: mrr_at_3
            value: 64.22200000000001
          - type: mrr_at_5
            value: 65.206
          - type: ndcg_at_1
            value: 56.99999999999999
          - type: ndcg_at_10
            value: 70.577
          - type: ndcg_at_100
            value: 72.879
          - type: ndcg_at_1000
            value: 73.45
          - type: ndcg_at_3
            value: 65.5
          - type: ndcg_at_5
            value: 67.278
          - type: precision_at_1
            value: 56.99999999999999
          - type: precision_at_10
            value: 9.667
          - type: precision_at_100
            value: 1.083
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 26
          - type: precision_at_5
            value: 16.933
          - type: recall_at_1
            value: 54.31700000000001
          - type: recall_at_10
            value: 85.056
          - type: recall_at_100
            value: 95.667
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 71
          - type: recall_at_5
            value: 75.672
      - task:
          type: Retrieval
        dataset:
          name: MTEB TRECCOVID-PL
          type: clarin-knext/trec-covid-pl
          config: default
          split: test
          revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd
        metrics:
          - type: map_at_1
            value: 0.245
          - type: map_at_10
            value: 2.051
          - type: map_at_100
            value: 12.009
          - type: map_at_1000
            value: 27.448
          - type: map_at_3
            value: 0.721
          - type: map_at_5
            value: 1.13
          - type: mrr_at_1
            value: 88
          - type: mrr_at_10
            value: 93
          - type: mrr_at_100
            value: 93
          - type: mrr_at_1000
            value: 93
          - type: mrr_at_3
            value: 93
          - type: mrr_at_5
            value: 93
          - type: ndcg_at_1
            value: 85
          - type: ndcg_at_10
            value: 80.303
          - type: ndcg_at_100
            value: 61.23499999999999
          - type: ndcg_at_1000
            value: 52.978
          - type: ndcg_at_3
            value: 84.419
          - type: ndcg_at_5
            value: 82.976
          - type: precision_at_1
            value: 88
          - type: precision_at_10
            value: 83.39999999999999
          - type: precision_at_100
            value: 61.96
          - type: precision_at_1000
            value: 22.648
          - type: precision_at_3
            value: 89.333
          - type: precision_at_5
            value: 87.2
          - type: recall_at_1
            value: 0.245
          - type: recall_at_10
            value: 2.193
          - type: recall_at_100
            value: 14.938
          - type: recall_at_1000
            value: 48.563
          - type: recall_at_3
            value: 0.738
          - type: recall_at_5
            value: 1.173
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

Alibaba-NLP/gte-Qwen2-7B-instruct - GGUF

This repo contains GGUF format model files for Alibaba-NLP/gte-Qwen2-7B-instruct.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Model file specification

Filename Quant type File Size Description
gte-Qwen2-7B-instruct-Q2_K.gguf Q2_K 2.807 GB smallest, significant quality loss - not recommended for most purposes
gte-Qwen2-7B-instruct-Q3_K_S.gguf Q3_K_S 3.251 GB very small, high quality loss
gte-Qwen2-7B-instruct-Q3_K_M.gguf Q3_K_M 3.545 GB very small, high quality loss
gte-Qwen2-7B-instruct-Q3_K_L.gguf Q3_K_L 3.806 GB small, substantial quality loss
gte-Qwen2-7B-instruct-Q4_0.gguf Q4_0 4.125 GB legacy; small, very high quality loss - prefer using Q3_K_M
gte-Qwen2-7B-instruct-Q4_K_S.gguf Q4_K_S 4.150 GB small, greater quality loss
gte-Qwen2-7B-instruct-Q4_K_M.gguf Q4_K_M 4.360 GB medium, balanced quality - recommended
gte-Qwen2-7B-instruct-Q5_0.gguf Q5_0 4.948 GB legacy; medium, balanced quality - prefer using Q4_K_M
gte-Qwen2-7B-instruct-Q5_K_S.gguf Q5_K_S 4.948 GB large, low quality loss - recommended
gte-Qwen2-7B-instruct-Q5_K_M.gguf Q5_K_M 5.069 GB large, very low quality loss - recommended
gte-Qwen2-7B-instruct-Q6_K.gguf Q6_K 5.822 GB very large, extremely low quality loss
gte-Qwen2-7B-instruct-Q8_0.gguf Q8_0 7.539 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/gte-Qwen2-7B-instruct-GGUF --include "gte-Qwen2-7B-instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/gte-Qwen2-7B-instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'