---
pipeline_tag: text-generation
inference: true
license: apache-2.0
datasets:
- codeparrot/github-code-clean
- bigcode/starcoderdata
- open-web-math/open-web-math
- math-ai/StackMathQA
metrics:
- code_eval
library_name: transformers
tags:
- code
- granite
- TensorBlock
- GGUF
base_model: ibm-granite/granite-34b-code-base-8k
model-index:
- name: granite-34b-code-base-8k
results:
- task:
type: text-generation
dataset:
name: MBPP
type: mbpp
metrics:
- type: pass@1
value: 47.2
name: pass@1
- task:
type: text-generation
dataset:
name: MBPP+
type: evalplus/mbppplus
metrics:
- type: pass@1
value: 53.1
name: pass@1
- task:
type: text-generation
dataset:
name: HumanEvalSynthesis(Python)
type: bigcode/humanevalpack
metrics:
- type: pass@1
value: 48.2
name: pass@1
- type: pass@1
value: 54.9
name: pass@1
- type: pass@1
value: 61.6
name: pass@1
- type: pass@1
value: 40.2
name: pass@1
- type: pass@1
value: 50.0
name: pass@1
- type: pass@1
value: 39.6
name: pass@1
- type: pass@1
value: 42.7
name: pass@1
- type: pass@1
value: 26.2
name: pass@1
- type: pass@1
value: 47.0
name: pass@1
- type: pass@1
value: 26.8
name: pass@1
- type: pass@1
value: 36.6
name: pass@1
- type: pass@1
value: 25.0
name: pass@1
- type: pass@1
value: 20.1
name: pass@1
- type: pass@1
value: 30.5
name: pass@1
- type: pass@1
value: 40.9
name: pass@1
- type: pass@1
value: 34.1
name: pass@1
- type: pass@1
value: 39.0
name: pass@1
- type: pass@1
value: 12.2
name: pass@1
---
## ibm-granite/granite-34b-code-base-8k - GGUF
This repo contains GGUF format model files for [ibm-granite/granite-34b-code-base-8k](https://huggingface.co/ibm-granite/granite-34b-code-base-8k).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [granite-34b-code-base-8k-Q2_K.gguf](https://huggingface.co/tensorblock/granite-34b-code-base-8k-GGUF/blob/main/granite-34b-code-base-8k-Q2_K.gguf) | Q2_K | 12.207 GB | smallest, significant quality loss - not recommended for most purposes |
| [granite-34b-code-base-8k-Q3_K_S.gguf](https://huggingface.co/tensorblock/granite-34b-code-base-8k-GGUF/blob/main/granite-34b-code-base-8k-Q3_K_S.gguf) | Q3_K_S | 13.791 GB | very small, high quality loss |
| [granite-34b-code-base-8k-Q3_K_M.gguf](https://huggingface.co/tensorblock/granite-34b-code-base-8k-GGUF/blob/main/granite-34b-code-base-8k-Q3_K_M.gguf) | Q3_K_M | 16.361 GB | very small, high quality loss |
| [granite-34b-code-base-8k-Q3_K_L.gguf](https://huggingface.co/tensorblock/granite-34b-code-base-8k-GGUF/blob/main/granite-34b-code-base-8k-Q3_K_L.gguf) | Q3_K_L | 18.207 GB | small, substantial quality loss |
| [granite-34b-code-base-8k-Q4_0.gguf](https://huggingface.co/tensorblock/granite-34b-code-base-8k-GGUF/blob/main/granite-34b-code-base-8k-Q4_0.gguf) | Q4_0 | 17.917 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [granite-34b-code-base-8k-Q4_K_S.gguf](https://huggingface.co/tensorblock/granite-34b-code-base-8k-GGUF/blob/main/granite-34b-code-base-8k-Q4_K_S.gguf) | Q4_K_S | 18.110 GB | small, greater quality loss |
| [granite-34b-code-base-8k-Q4_K_M.gguf](https://huggingface.co/tensorblock/granite-34b-code-base-8k-GGUF/blob/main/granite-34b-code-base-8k-Q4_K_M.gguf) | Q4_K_M | 19.915 GB | medium, balanced quality - recommended |
| [granite-34b-code-base-8k-Q5_0.gguf](https://huggingface.co/tensorblock/granite-34b-code-base-8k-GGUF/blob/main/granite-34b-code-base-8k-Q5_0.gguf) | Q5_0 | 21.800 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [granite-34b-code-base-8k-Q5_K_S.gguf](https://huggingface.co/tensorblock/granite-34b-code-base-8k-GGUF/blob/main/granite-34b-code-base-8k-Q5_K_S.gguf) | Q5_K_S | 21.800 GB | large, low quality loss - recommended |
| [granite-34b-code-base-8k-Q5_K_M.gguf](https://huggingface.co/tensorblock/granite-34b-code-base-8k-GGUF/blob/main/granite-34b-code-base-8k-Q5_K_M.gguf) | Q5_K_M | 23.050 GB | large, very low quality loss - recommended |
| [granite-34b-code-base-8k-Q6_K.gguf](https://huggingface.co/tensorblock/granite-34b-code-base-8k-GGUF/blob/main/granite-34b-code-base-8k-Q6_K.gguf) | Q6_K | 25.926 GB | very large, extremely low quality loss |
| [granite-34b-code-base-8k-Q8_0.gguf](https://huggingface.co/tensorblock/granite-34b-code-base-8k-GGUF/blob/main/granite-34b-code-base-8k-Q8_0.gguf) | Q8_0 | 33.518 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/granite-34b-code-base-8k-GGUF --include "granite-34b-code-base-8k-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/granite-34b-code-base-8k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```