Text Generation
GGUF
English
TensorBlock
GGUF
Inference Endpoints
morriszms's picture
Upload folder using huggingface_hub
b6017ed verified
metadata
license: mit
datasets:
  - garage-bAInd/Open-Platypus
  - databricks/databricks-dolly-15k
  - timdettmers/openassistant-guanaco
language:
  - en
pipeline_tag: text-generation
base_model: lgaalves/gpt2_platypus-dolly-guanaco
tags:
  - TensorBlock
  - GGUF
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

lgaalves/gpt2_platypus-dolly-guanaco - GGUF

This repo contains GGUF format model files for lgaalves/gpt2_platypus-dolly-guanaco.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template


Model file specification

Filename Quant type File Size Description
gpt2_platypus-dolly-guanaco-Q2_K.gguf Q2_K 0.076 GB smallest, significant quality loss - not recommended for most purposes
gpt2_platypus-dolly-guanaco-Q3_K_S.gguf Q3_K_S 0.084 GB very small, high quality loss
gpt2_platypus-dolly-guanaco-Q3_K_M.gguf Q3_K_M 0.091 GB very small, high quality loss
gpt2_platypus-dolly-guanaco-Q3_K_L.gguf Q3_K_L 0.095 GB small, substantial quality loss
gpt2_platypus-dolly-guanaco-Q4_0.gguf Q4_0 0.099 GB legacy; small, very high quality loss - prefer using Q3_K_M
gpt2_platypus-dolly-guanaco-Q4_K_S.gguf Q4_K_S 0.100 GB small, greater quality loss
gpt2_platypus-dolly-guanaco-Q4_K_M.gguf Q4_K_M 0.105 GB medium, balanced quality - recommended
gpt2_platypus-dolly-guanaco-Q5_0.gguf Q5_0 0.114 GB legacy; medium, balanced quality - prefer using Q4_K_M
gpt2_platypus-dolly-guanaco-Q5_K_S.gguf Q5_K_S 0.114 GB large, low quality loss - recommended
gpt2_platypus-dolly-guanaco-Q5_K_M.gguf Q5_K_M 0.118 GB large, very low quality loss - recommended
gpt2_platypus-dolly-guanaco-Q6_K.gguf Q6_K 0.129 GB very large, extremely low quality loss
gpt2_platypus-dolly-guanaco-Q8_0.gguf Q8_0 0.165 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/gpt2_platypus-dolly-guanaco-GGUF --include "gpt2_platypus-dolly-guanaco-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/gpt2_platypus-dolly-guanaco-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'