--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license tags: - conversational - TensorBlock - GGUF base_model: google/datagemma-rag-27b-it ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## google/datagemma-rag-27b-it - GGUF This repo contains GGUF format model files for [google/datagemma-rag-27b-it](https://huggingface.co/google/datagemma-rag-27b-it). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` user {prompt} model ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [datagemma-rag-27b-it-Q2_K.gguf](https://huggingface.co/tensorblock/datagemma-rag-27b-it-GGUF/blob/main/datagemma-rag-27b-it-Q2_K.gguf) | Q2_K | 10.450 GB | smallest, significant quality loss - not recommended for most purposes | | [datagemma-rag-27b-it-Q3_K_S.gguf](https://huggingface.co/tensorblock/datagemma-rag-27b-it-GGUF/blob/main/datagemma-rag-27b-it-Q3_K_S.gguf) | Q3_K_S | 12.169 GB | very small, high quality loss | | [datagemma-rag-27b-it-Q3_K_M.gguf](https://huggingface.co/tensorblock/datagemma-rag-27b-it-GGUF/blob/main/datagemma-rag-27b-it-Q3_K_M.gguf) | Q3_K_M | 13.425 GB | very small, high quality loss | | [datagemma-rag-27b-it-Q3_K_L.gguf](https://huggingface.co/tensorblock/datagemma-rag-27b-it-GGUF/blob/main/datagemma-rag-27b-it-Q3_K_L.gguf) | Q3_K_L | 14.519 GB | small, substantial quality loss | | [datagemma-rag-27b-it-Q4_0.gguf](https://huggingface.co/tensorblock/datagemma-rag-27b-it-GGUF/blob/main/datagemma-rag-27b-it-Q4_0.gguf) | Q4_0 | 15.628 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [datagemma-rag-27b-it-Q4_K_S.gguf](https://huggingface.co/tensorblock/datagemma-rag-27b-it-GGUF/blob/main/datagemma-rag-27b-it-Q4_K_S.gguf) | Q4_K_S | 15.739 GB | small, greater quality loss | | [datagemma-rag-27b-it-Q4_K_M.gguf](https://huggingface.co/tensorblock/datagemma-rag-27b-it-GGUF/blob/main/datagemma-rag-27b-it-Q4_K_M.gguf) | Q4_K_M | 16.645 GB | medium, balanced quality - recommended | | [datagemma-rag-27b-it-Q5_0.gguf](https://huggingface.co/tensorblock/datagemma-rag-27b-it-GGUF/blob/main/datagemma-rag-27b-it-Q5_0.gguf) | Q5_0 | 18.884 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [datagemma-rag-27b-it-Q5_K_S.gguf](https://huggingface.co/tensorblock/datagemma-rag-27b-it-GGUF/blob/main/datagemma-rag-27b-it-Q5_K_S.gguf) | Q5_K_S | 18.884 GB | large, low quality loss - recommended | | [datagemma-rag-27b-it-Q5_K_M.gguf](https://huggingface.co/tensorblock/datagemma-rag-27b-it-GGUF/blob/main/datagemma-rag-27b-it-Q5_K_M.gguf) | Q5_K_M | 19.408 GB | large, very low quality loss - recommended | | [datagemma-rag-27b-it-Q6_K.gguf](https://huggingface.co/tensorblock/datagemma-rag-27b-it-GGUF/blob/main/datagemma-rag-27b-it-Q6_K.gguf) | Q6_K | 22.344 GB | very large, extremely low quality loss | | [datagemma-rag-27b-it-Q8_0.gguf](https://huggingface.co/tensorblock/datagemma-rag-27b-it-GGUF/blob/main/datagemma-rag-27b-it-Q8_0.gguf) | Q8_0 | 28.937 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/datagemma-rag-27b-it-GGUF --include "datagemma-rag-27b-it-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/datagemma-rag-27b-it-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```