--- datasets: - bigscience/xP3 license: bigscience-bloom-rail-1.0 language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zu programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation widget: - text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative? example_title: zh-en sentiment - text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评? example_title: zh-zh sentiment - text: Suggest at least five related search terms to "Mạng neural nhân tạo". example_title: vi-en query - text: Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels». example_title: fr-fr query - text: Explain in a sentence in Telugu what is backpropagation in neural networks. example_title: te-en qa - text: Why is the sky blue? example_title: en-en qa - text: 'Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):' example_title: es-en fable - text: 'Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is "Violence is the last refuge of the incompetent". Fable (in Hindi):' example_title: hi-en fable base_model: bigscience/bloomz-560m tags: - TensorBlock - GGUF model-index: - name: bloomz-560m results: - task: type: Coreference resolution dataset: name: Winogrande XL (xl) type: winogrande config: xl split: validation revision: a80f460359d1e9a67c006011c94de42a8759430c metrics: - type: Accuracy value: 52.41 - task: type: Coreference resolution dataset: name: XWinograd (en) type: Muennighoff/xwinograd config: en split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 51.01 - task: type: Coreference resolution dataset: name: XWinograd (fr) type: Muennighoff/xwinograd config: fr split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 51.81 - task: type: Coreference resolution dataset: name: XWinograd (jp) type: Muennighoff/xwinograd config: jp split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 52.03 - task: type: Coreference resolution dataset: name: XWinograd (pt) type: Muennighoff/xwinograd config: pt split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 53.99 - task: type: Coreference resolution dataset: name: XWinograd (ru) type: Muennighoff/xwinograd config: ru split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 53.97 - task: type: Coreference resolution dataset: name: XWinograd (zh) type: Muennighoff/xwinograd config: zh split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 54.76 - task: type: Natural language inference dataset: name: ANLI (r1) type: anli config: r1 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 33.4 - task: type: Natural language inference dataset: name: ANLI (r2) type: anli config: r2 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 33.4 - task: type: Natural language inference dataset: name: ANLI (r3) type: anli config: r3 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 33.5 - task: type: Natural language inference dataset: name: SuperGLUE (cb) type: super_glue config: cb split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 53.57 - task: type: Natural language inference dataset: name: SuperGLUE (rte) type: super_glue config: rte split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 67.15 - task: type: Natural language inference dataset: name: XNLI (ar) type: xnli config: ar split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 44.46 - task: type: Natural language inference dataset: name: XNLI (bg) type: xnli config: bg split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 39.76 - task: type: Natural language inference dataset: name: XNLI (de) type: xnli config: de split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 39.36 - task: type: Natural language inference dataset: name: XNLI (el) type: xnli config: el split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 40.96 - task: type: Natural language inference dataset: name: XNLI (en) type: xnli config: en split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 46.43 - task: type: Natural language inference dataset: name: XNLI (es) type: xnli config: es split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 44.98 - task: type: Natural language inference dataset: name: XNLI (fr) type: xnli config: fr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 45.54 - task: type: Natural language inference dataset: name: XNLI (hi) type: xnli config: hi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 41.81 - task: type: Natural language inference dataset: name: XNLI (ru) type: xnli config: ru split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 39.64 - task: type: Natural language inference dataset: name: XNLI (sw) type: xnli config: sw split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 38.35 - task: type: Natural language inference dataset: name: XNLI (th) type: xnli config: th split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 35.5 - task: type: Natural language inference dataset: name: XNLI (tr) type: xnli config: tr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 37.31 - task: type: Natural language inference dataset: name: XNLI (ur) type: xnli config: ur split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 38.96 - task: type: Natural language inference dataset: name: XNLI (vi) type: xnli config: vi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 44.74 - task: type: Natural language inference dataset: name: XNLI (zh) type: xnli config: zh split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 44.66 - task: type: Program synthesis dataset: name: HumanEval type: openai_humaneval config: None split: test revision: e8dc562f5de170c54b5481011dd9f4fa04845771 metrics: - type: Pass@1 value: 2.18 - type: Pass@10 value: 4.11 - type: Pass@100 value: 9.0 - task: type: Sentence completion dataset: name: StoryCloze (2016) type: story_cloze config: '2016' split: validation revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db metrics: - type: Accuracy value: 60.29 - task: type: Sentence completion dataset: name: SuperGLUE (copa) type: super_glue config: copa split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 52.0 - task: type: Sentence completion dataset: name: XCOPA (et) type: xcopa config: et split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 53.0 - task: type: Sentence completion dataset: name: XCOPA (ht) type: xcopa config: ht split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 49.0 - task: type: Sentence completion dataset: name: XCOPA (id) type: xcopa config: id split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 57.0 - task: type: Sentence completion dataset: name: XCOPA (it) type: xcopa config: it split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 52.0 - task: type: Sentence completion dataset: name: XCOPA (qu) type: xcopa config: qu split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 55.0 - task: type: Sentence completion dataset: name: XCOPA (sw) type: xcopa config: sw split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 56.0 - task: type: Sentence completion dataset: name: XCOPA (ta) type: xcopa config: ta split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 58.0 - task: type: Sentence completion dataset: name: XCOPA (th) type: xcopa config: th split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 58.0 - task: type: Sentence completion dataset: name: XCOPA (tr) type: xcopa config: tr split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: name: XCOPA (vi) type: xcopa config: vi split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: name: XCOPA (zh) type: xcopa config: zh split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: name: XStoryCloze (ar) type: Muennighoff/xstory_cloze config: ar split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 54.4 - task: type: Sentence completion dataset: name: XStoryCloze (es) type: Muennighoff/xstory_cloze config: es split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 56.45 - task: type: Sentence completion dataset: name: XStoryCloze (eu) type: Muennighoff/xstory_cloze config: eu split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 50.56 - task: type: Sentence completion dataset: name: XStoryCloze (hi) type: Muennighoff/xstory_cloze config: hi split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 55.79 - task: type: Sentence completion dataset: name: XStoryCloze (id) type: Muennighoff/xstory_cloze config: id split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 57.84 - task: type: Sentence completion dataset: name: XStoryCloze (my) type: Muennighoff/xstory_cloze config: my split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 47.05 - task: type: Sentence completion dataset: name: XStoryCloze (ru) type: Muennighoff/xstory_cloze config: ru split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 53.14 - task: type: Sentence completion dataset: name: XStoryCloze (sw) type: Muennighoff/xstory_cloze config: sw split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 51.36 - task: type: Sentence completion dataset: name: XStoryCloze (te) type: Muennighoff/xstory_cloze config: te split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 54.86 - task: type: Sentence completion dataset: name: XStoryCloze (zh) type: Muennighoff/xstory_cloze config: zh split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 56.52 ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## bigscience/bloomz-560m - GGUF This repo contains GGUF format model files for [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [bloomz-560m-Q2_K.gguf](https://huggingface.co/tensorblock/bloomz-560m-GGUF/blob/main/bloomz-560m-Q2_K.gguf) | Q2_K | 0.392 GB | smallest, significant quality loss - not recommended for most purposes | | [bloomz-560m-Q3_K_S.gguf](https://huggingface.co/tensorblock/bloomz-560m-GGUF/blob/main/bloomz-560m-Q3_K_S.gguf) | Q3_K_S | 0.433 GB | very small, high quality loss | | [bloomz-560m-Q3_K_M.gguf](https://huggingface.co/tensorblock/bloomz-560m-GGUF/blob/main/bloomz-560m-Q3_K_M.gguf) | Q3_K_M | 0.458 GB | very small, high quality loss | | [bloomz-560m-Q3_K_L.gguf](https://huggingface.co/tensorblock/bloomz-560m-GGUF/blob/main/bloomz-560m-Q3_K_L.gguf) | Q3_K_L | 0.472 GB | small, substantial quality loss | | [bloomz-560m-Q4_0.gguf](https://huggingface.co/tensorblock/bloomz-560m-GGUF/blob/main/bloomz-560m-Q4_0.gguf) | Q4_0 | 0.502 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [bloomz-560m-Q4_K_S.gguf](https://huggingface.co/tensorblock/bloomz-560m-GGUF/blob/main/bloomz-560m-Q4_K_S.gguf) | Q4_K_S | 0.503 GB | small, greater quality loss | | [bloomz-560m-Q4_K_M.gguf](https://huggingface.co/tensorblock/bloomz-560m-GGUF/blob/main/bloomz-560m-Q4_K_M.gguf) | Q4_K_M | 0.523 GB | medium, balanced quality - recommended | | [bloomz-560m-Q5_0.gguf](https://huggingface.co/tensorblock/bloomz-560m-GGUF/blob/main/bloomz-560m-Q5_0.gguf) | Q5_0 | 0.567 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [bloomz-560m-Q5_K_S.gguf](https://huggingface.co/tensorblock/bloomz-560m-GGUF/blob/main/bloomz-560m-Q5_K_S.gguf) | Q5_K_S | 0.567 GB | large, low quality loss - recommended | | [bloomz-560m-Q5_K_M.gguf](https://huggingface.co/tensorblock/bloomz-560m-GGUF/blob/main/bloomz-560m-Q5_K_M.gguf) | Q5_K_M | 0.583 GB | large, very low quality loss - recommended | | [bloomz-560m-Q6_K.gguf](https://huggingface.co/tensorblock/bloomz-560m-GGUF/blob/main/bloomz-560m-Q6_K.gguf) | Q6_K | 0.636 GB | very large, extremely low quality loss | | [bloomz-560m-Q8_0.gguf](https://huggingface.co/tensorblock/bloomz-560m-GGUF/blob/main/bloomz-560m-Q8_0.gguf) | Q8_0 | 0.820 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/bloomz-560m-GGUF --include "bloomz-560m-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/bloomz-560m-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```