---
license: other
license_name: llama3
license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE
base_model: jondurbin/airoboros-dpo-70b-3.3
tags:
- llama-3
- TensorBlock
- GGUF
datasets:
- jondurbin/airoboros-3.2
- bluemoon-fandom-1-1-rp-cleaned
- boolq
- LDJnr/Capybara
- jondurbin/cinematika-v0.1
- glaiveai/glaive-function-calling-v2
- grimulkan/LimaRP-augmented
- piqa
- Vezora/Tested-22k-Python-Alpaca
- mattpscott/airoboros-summarization
- unalignment/toxic-dpo-v0.2
- allenai/ultrafeedback_binarized_cleaned
- argilla/distilabel-intel-orca-dpo-pairs
- jondurbin/airoboros-3.2
- jondurbin/contextual-dpo-v0.1
- jondurbin/gutenberg-dpo-v0.1
- jondurbin/py-dpo-v0.1
- jondurbin/truthy-dpo-v0.1
- jondurbin/gutenberg-dpo-v0.1
- lmsys/lmsys-chat-1m
---
## jondurbin/airoboros-dpo-70b-3.3 - GGUF
This repo contains GGUF format model files for [jondurbin/airoboros-dpo-70b-3.3](https://huggingface.co/jondurbin/airoboros-dpo-70b-3.3).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [airoboros-dpo-70b-3.3-Q2_K.gguf](https://huggingface.co/tensorblock/airoboros-dpo-70b-3.3-GGUF/blob/main/airoboros-dpo-70b-3.3-Q2_K.gguf) | Q2_K | 26.375 GB | smallest, significant quality loss - not recommended for most purposes |
| [airoboros-dpo-70b-3.3-Q3_K_S.gguf](https://huggingface.co/tensorblock/airoboros-dpo-70b-3.3-GGUF/blob/main/airoboros-dpo-70b-3.3-Q3_K_S.gguf) | Q3_K_S | 30.912 GB | very small, high quality loss |
| [airoboros-dpo-70b-3.3-Q3_K_M.gguf](https://huggingface.co/tensorblock/airoboros-dpo-70b-3.3-GGUF/blob/main/airoboros-dpo-70b-3.3-Q3_K_M.gguf) | Q3_K_M | 34.267 GB | very small, high quality loss |
| [airoboros-dpo-70b-3.3-Q3_K_L.gguf](https://huggingface.co/tensorblock/airoboros-dpo-70b-3.3-GGUF/blob/main/airoboros-dpo-70b-3.3-Q3_K_L.gguf) | Q3_K_L | 37.141 GB | small, substantial quality loss |
| [airoboros-dpo-70b-3.3-Q4_0.gguf](https://huggingface.co/tensorblock/airoboros-dpo-70b-3.3-GGUF/blob/main/airoboros-dpo-70b-3.3-Q4_0.gguf) | Q4_0 | 39.970 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [airoboros-dpo-70b-3.3-Q4_K_S.gguf](https://huggingface.co/tensorblock/airoboros-dpo-70b-3.3-GGUF/blob/main/airoboros-dpo-70b-3.3-Q4_K_S.gguf) | Q4_K_S | 40.347 GB | small, greater quality loss |
| [airoboros-dpo-70b-3.3-Q4_K_M.gguf](https://huggingface.co/tensorblock/airoboros-dpo-70b-3.3-GGUF/blob/main/airoboros-dpo-70b-3.3-Q4_K_M.gguf) | Q4_K_M | 42.520 GB | medium, balanced quality - recommended |
| [airoboros-dpo-70b-3.3-Q5_0.gguf](https://huggingface.co/tensorblock/airoboros-dpo-70b-3.3-GGUF/blob/main/airoboros-dpo-70b-3.3-Q5_0.gguf) | Q5_0 | 48.657 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [airoboros-dpo-70b-3.3-Q5_K_S.gguf](https://huggingface.co/tensorblock/airoboros-dpo-70b-3.3-GGUF/blob/main/airoboros-dpo-70b-3.3-Q5_K_S.gguf) | Q5_K_S | 48.657 GB | large, low quality loss - recommended |
| [airoboros-dpo-70b-3.3-Q5_K_M.gguf](https://huggingface.co/tensorblock/airoboros-dpo-70b-3.3-GGUF/blob/main/airoboros-dpo-70b-3.3-Q5_K_M.gguf) | Q5_K_M | 49.950 GB | large, very low quality loss - recommended |
| [airoboros-dpo-70b-3.3-Q6_K](https://huggingface.co/tensorblock/airoboros-dpo-70b-3.3-GGUF/blob/main/airoboros-dpo-70b-3.3-Q6_K) | Q6_K | 57.888 GB | very large, extremely low quality loss |
| [airoboros-dpo-70b-3.3-Q8_0](https://huggingface.co/tensorblock/airoboros-dpo-70b-3.3-GGUF/blob/main/airoboros-dpo-70b-3.3-Q8_0) | Q8_0 | 74.975 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/airoboros-dpo-70b-3.3-GGUF --include "airoboros-dpo-70b-3.3-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/airoboros-dpo-70b-3.3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```