--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - Locutusque/TinyMistral-248M-v2 - Locutusque/TinyMistral-248M-v2.5 - Locutusque/TinyMistral-248M-v2.5-Instruct - jtatman/tinymistral-v2-pycoder-instruct-248m - Felladrin/TinyMistral-248M-SFT-v4 - Locutusque/TinyMistral-248M-v2-Instruct - TensorBlock - GGUF base_model: M4-ai/TinyMistral-6x248M inference: parameters: do_sample: true temperature: 0.2 top_p: 0.14 top_k: 12 max_new_tokens: 250 repetition_penalty: 1.15 widget: - text: '<|im_start|>user Write me a Python program that calculates the factorial of n. <|im_end|> <|im_start|>assistant ' - text: An emerging clinical approach to treat substance abuse disorders involves a form of cognitive-behavioral therapy whereby addicts learn to reduce their reactivity to drug-paired stimuli through cue-exposure or extinction training. It is, however, datasets: - nampdn-ai/mini-peS2o ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## M4-ai/TinyMistral-6x248M - GGUF This repo contains GGUF format model files for [M4-ai/TinyMistral-6x248M](https://huggingface.co/M4-ai/TinyMistral-6x248M). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [TinyMistral-6x248M-Q2_K.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q2_K.gguf) | Q2_K | 0.379 GB | smallest, significant quality loss - not recommended for most purposes | | [TinyMistral-6x248M-Q3_K_S.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q3_K_S.gguf) | Q3_K_S | 0.445 GB | very small, high quality loss | | [TinyMistral-6x248M-Q3_K_M.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q3_K_M.gguf) | Q3_K_M | 0.487 GB | very small, high quality loss | | [TinyMistral-6x248M-Q3_K_L.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q3_K_L.gguf) | Q3_K_L | 0.527 GB | small, substantial quality loss | | [TinyMistral-6x248M-Q4_0.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q4_0.gguf) | Q4_0 | 0.574 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [TinyMistral-6x248M-Q4_K_S.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q4_K_S.gguf) | Q4_K_S | 0.577 GB | small, greater quality loss | | [TinyMistral-6x248M-Q4_K_M.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q4_K_M.gguf) | Q4_K_M | 0.613 GB | medium, balanced quality - recommended | | [TinyMistral-6x248M-Q5_0.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q5_0.gguf) | Q5_0 | 0.695 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [TinyMistral-6x248M-Q5_K_S.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q5_K_S.gguf) | Q5_K_S | 0.695 GB | large, low quality loss - recommended | | [TinyMistral-6x248M-Q5_K_M.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q5_K_M.gguf) | Q5_K_M | 0.715 GB | large, very low quality loss - recommended | | [TinyMistral-6x248M-Q6_K.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q6_K.gguf) | Q6_K | 0.824 GB | very large, extremely low quality loss | | [TinyMistral-6x248M-Q8_0.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-GGUF/blob/main/TinyMistral-6x248M-Q8_0.gguf) | Q8_0 | 1.067 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/TinyMistral-6x248M-GGUF --include "TinyMistral-6x248M-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/TinyMistral-6x248M-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```