--- language: - en license: other library_name: transformers datasets: - Open-Orca/SlimOrca - m-a-p/Code-Feedback - MaziyarPanahi/WizardLM_evol_instruct_V2_196k - camel-ai/math - camel-ai/physics - camel-ai/biology - camel-ai/chemistry - LDJnr/Capybara - jondurbin/airoboros-3.2 - microsoft/orca-math-word-problems-200k inference: parameters: do_sample: true temperature: 0.8 top_p: 0.95 top_k: 40 max_new_tokens: 250 repetition_penalty: 1.1 base_model: M4-ai/Orca-2.0-Tau-1.8B tags: - TensorBlock - GGUF model-index: - name: Orca-2.0-Tau-1.8B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 37.12 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/Orca-2.0-Tau-1.8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 61.13 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/Orca-2.0-Tau-1.8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 45.27 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/Orca-2.0-Tau-1.8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 39.1 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/Orca-2.0-Tau-1.8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 59.59 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/Orca-2.0-Tau-1.8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 28.96 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/Orca-2.0-Tau-1.8B name: Open LLM Leaderboard ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## M4-ai/Orca-2.0-Tau-1.8B - GGUF This repo contains GGUF format model files for [M4-ai/Orca-2.0-Tau-1.8B](https://huggingface.co/M4-ai/Orca-2.0-Tau-1.8B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Orca-2.0-Tau-1.8B-Q2_K.gguf](https://huggingface.co/tensorblock/Orca-2.0-Tau-1.8B-GGUF/blob/main/Orca-2.0-Tau-1.8B-Q2_K.gguf) | Q2_K | 0.847 GB | smallest, significant quality loss - not recommended for most purposes | | [Orca-2.0-Tau-1.8B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Orca-2.0-Tau-1.8B-GGUF/blob/main/Orca-2.0-Tau-1.8B-Q3_K_S.gguf) | Q3_K_S | 0.954 GB | very small, high quality loss | | [Orca-2.0-Tau-1.8B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Orca-2.0-Tau-1.8B-GGUF/blob/main/Orca-2.0-Tau-1.8B-Q3_K_M.gguf) | Q3_K_M | 1.016 GB | very small, high quality loss | | [Orca-2.0-Tau-1.8B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Orca-2.0-Tau-1.8B-GGUF/blob/main/Orca-2.0-Tau-1.8B-Q3_K_L.gguf) | Q3_K_L | 1.056 GB | small, substantial quality loss | | [Orca-2.0-Tau-1.8B-Q4_0.gguf](https://huggingface.co/tensorblock/Orca-2.0-Tau-1.8B-GGUF/blob/main/Orca-2.0-Tau-1.8B-Q4_0.gguf) | Q4_0 | 1.120 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Orca-2.0-Tau-1.8B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Orca-2.0-Tau-1.8B-GGUF/blob/main/Orca-2.0-Tau-1.8B-Q4_K_S.gguf) | Q4_K_S | 1.158 GB | small, greater quality loss | | [Orca-2.0-Tau-1.8B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Orca-2.0-Tau-1.8B-GGUF/blob/main/Orca-2.0-Tau-1.8B-Q4_K_M.gguf) | Q4_K_M | 1.218 GB | medium, balanced quality - recommended | | [Orca-2.0-Tau-1.8B-Q5_0.gguf](https://huggingface.co/tensorblock/Orca-2.0-Tau-1.8B-GGUF/blob/main/Orca-2.0-Tau-1.8B-Q5_0.gguf) | Q5_0 | 1.311 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Orca-2.0-Tau-1.8B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Orca-2.0-Tau-1.8B-GGUF/blob/main/Orca-2.0-Tau-1.8B-Q5_K_S.gguf) | Q5_K_S | 1.328 GB | large, low quality loss - recommended | | [Orca-2.0-Tau-1.8B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Orca-2.0-Tau-1.8B-GGUF/blob/main/Orca-2.0-Tau-1.8B-Q5_K_M.gguf) | Q5_K_M | 1.377 GB | large, very low quality loss - recommended | | [Orca-2.0-Tau-1.8B-Q6_K.gguf](https://huggingface.co/tensorblock/Orca-2.0-Tau-1.8B-GGUF/blob/main/Orca-2.0-Tau-1.8B-Q6_K.gguf) | Q6_K | 1.579 GB | very large, extremely low quality loss | | [Orca-2.0-Tau-1.8B-Q8_0.gguf](https://huggingface.co/tensorblock/Orca-2.0-Tau-1.8B-GGUF/blob/main/Orca-2.0-Tau-1.8B-Q8_0.gguf) | Q8_0 | 1.958 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Orca-2.0-Tau-1.8B-GGUF --include "Orca-2.0-Tau-1.8B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Orca-2.0-Tau-1.8B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```