--- license: mit language: - en library_name: transformers tags: - orpo - phi3 - chatml - TensorBlock - GGUF datasets: argilla/ultrafeedback-binarized-preferences-cleaned metrics: - hellaswag - arc_challenge - m_mmlu 5 shot base_model: MoxoffSpA/Moxoff-Phi3Mini-ORPO ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## MoxoffSpA/Moxoff-Phi3Mini-ORPO - GGUF This repo contains GGUF format model files for [MoxoffSpA/Moxoff-Phi3Mini-ORPO](https://huggingface.co/MoxoffSpA/Moxoff-Phi3Mini-ORPO). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` <|user|> {prompt}<|end|> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Moxoff-Phi3Mini-ORPO-Q2_K.gguf](https://huggingface.co/tensorblock/Moxoff-Phi3Mini-ORPO-GGUF/blob/main/Moxoff-Phi3Mini-ORPO-Q2_K.gguf) | Q2_K | 1.319 GB | smallest, significant quality loss - not recommended for most purposes | | [Moxoff-Phi3Mini-ORPO-Q3_K_S.gguf](https://huggingface.co/tensorblock/Moxoff-Phi3Mini-ORPO-GGUF/blob/main/Moxoff-Phi3Mini-ORPO-Q3_K_S.gguf) | Q3_K_S | 1.566 GB | very small, high quality loss | | [Moxoff-Phi3Mini-ORPO-Q3_K_M.gguf](https://huggingface.co/tensorblock/Moxoff-Phi3Mini-ORPO-GGUF/blob/main/Moxoff-Phi3Mini-ORPO-Q3_K_M.gguf) | Q3_K_M | 1.821 GB | very small, high quality loss | | [Moxoff-Phi3Mini-ORPO-Q3_K_L.gguf](https://huggingface.co/tensorblock/Moxoff-Phi3Mini-ORPO-GGUF/blob/main/Moxoff-Phi3Mini-ORPO-Q3_K_L.gguf) | Q3_K_L | 1.944 GB | small, substantial quality loss | | [Moxoff-Phi3Mini-ORPO-Q4_0.gguf](https://huggingface.co/tensorblock/Moxoff-Phi3Mini-ORPO-GGUF/blob/main/Moxoff-Phi3Mini-ORPO-Q4_0.gguf) | Q4_0 | 2.027 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Moxoff-Phi3Mini-ORPO-Q4_K_S.gguf](https://huggingface.co/tensorblock/Moxoff-Phi3Mini-ORPO-GGUF/blob/main/Moxoff-Phi3Mini-ORPO-Q4_K_S.gguf) | Q4_K_S | 2.038 GB | small, greater quality loss | | [Moxoff-Phi3Mini-ORPO-Q4_K_M.gguf](https://huggingface.co/tensorblock/Moxoff-Phi3Mini-ORPO-GGUF/blob/main/Moxoff-Phi3Mini-ORPO-Q4_K_M.gguf) | Q4_K_M | 2.229 GB | medium, balanced quality - recommended | | [Moxoff-Phi3Mini-ORPO-Q5_0.gguf](https://huggingface.co/tensorblock/Moxoff-Phi3Mini-ORPO-GGUF/blob/main/Moxoff-Phi3Mini-ORPO-Q5_0.gguf) | Q5_0 | 2.460 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Moxoff-Phi3Mini-ORPO-Q5_K_S.gguf](https://huggingface.co/tensorblock/Moxoff-Phi3Mini-ORPO-GGUF/blob/main/Moxoff-Phi3Mini-ORPO-Q5_K_S.gguf) | Q5_K_S | 2.460 GB | large, low quality loss - recommended | | [Moxoff-Phi3Mini-ORPO-Q5_K_M.gguf](https://huggingface.co/tensorblock/Moxoff-Phi3Mini-ORPO-GGUF/blob/main/Moxoff-Phi3Mini-ORPO-Q5_K_M.gguf) | Q5_K_M | 2.622 GB | large, very low quality loss - recommended | | [Moxoff-Phi3Mini-ORPO-Q6_K.gguf](https://huggingface.co/tensorblock/Moxoff-Phi3Mini-ORPO-GGUF/blob/main/Moxoff-Phi3Mini-ORPO-Q6_K.gguf) | Q6_K | 2.920 GB | very large, extremely low quality loss | | [Moxoff-Phi3Mini-ORPO-Q8_0.gguf](https://huggingface.co/tensorblock/Moxoff-Phi3Mini-ORPO-GGUF/blob/main/Moxoff-Phi3Mini-ORPO-Q8_0.gguf) | Q8_0 | 3.782 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Moxoff-Phi3Mini-ORPO-GGUF --include "Moxoff-Phi3Mini-ORPO-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Moxoff-Phi3Mini-ORPO-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```