--- language: - en license: other tags: - axolotl - instruct - finetune - chatml - gpt4 - synthetic data - science - physics - chemistry - biology - math - qwen - qwen2 - TensorBlock - GGUF base_model: Weyaxi/Einstein-v7-Qwen2-7B datasets: - allenai/ai2_arc - camel-ai/physics - camel-ai/chemistry - camel-ai/biology - camel-ai/math - metaeval/reclor - openbookqa - mandyyyyii/scibench - derek-thomas/ScienceQA - TIGER-Lab/ScienceEval - jondurbin/airoboros-3.2 - LDJnr/Capybara - Cot-Alpaca-GPT4-From-OpenHermes-2.5 - STEM-AI-mtl/Electrical-engineering - knowrohit07/saraswati-stem - sablo/oasst2_curated - lmsys/lmsys-chat-1m - TIGER-Lab/MathInstruct - bigbio/med_qa - meta-math/MetaMathQA-40K - openbookqa - piqa - metaeval/reclor - derek-thomas/ScienceQA - scibench - sciq - Open-Orca/SlimOrca - migtissera/Synthia-v1.3 - TIGER-Lab/ScienceEval - allenai/WildChat - microsoft/orca-math-word-problems-200k - openchat/openchat_sharegpt4_dataset - teknium/GPTeacher-General-Instruct - m-a-p/CodeFeedback-Filtered-Instruction - totally-not-an-llm/EverythingLM-data-V3 - HuggingFaceH4/no_robots - OpenAssistant/oasst_top1_2023-08-25 - WizardLM/WizardLM_evol_instruct_70k - abacusai/SystemChat-1.1 - H-D-T/Buzz-V1.2 model-index: - name: Einstein-v7-Qwen2-7B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 41.0 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v7-Qwen2-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 32.84 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v7-Qwen2-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 15.18 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v7-Qwen2-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 6.6 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v7-Qwen2-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 14.06 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v7-Qwen2-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 34.4 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v7-Qwen2-7B name: Open LLM Leaderboard ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## Weyaxi/Einstein-v7-Qwen2-7B - GGUF This repo contains GGUF format model files for [Weyaxi/Einstein-v7-Qwen2-7B](https://huggingface.co/Weyaxi/Einstein-v7-Qwen2-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Einstein-v7-Qwen2-7B-Q2_K.gguf](https://huggingface.co/tensorblock/Einstein-v7-Qwen2-7B-GGUF/tree/main/Einstein-v7-Qwen2-7B-Q2_K.gguf) | Q2_K | 2.809 GB | smallest, significant quality loss - not recommended for most purposes | | [Einstein-v7-Qwen2-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Einstein-v7-Qwen2-7B-GGUF/tree/main/Einstein-v7-Qwen2-7B-Q3_K_S.gguf) | Q3_K_S | 3.253 GB | very small, high quality loss | | [Einstein-v7-Qwen2-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Einstein-v7-Qwen2-7B-GGUF/tree/main/Einstein-v7-Qwen2-7B-Q3_K_M.gguf) | Q3_K_M | 3.547 GB | very small, high quality loss | | [Einstein-v7-Qwen2-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Einstein-v7-Qwen2-7B-GGUF/tree/main/Einstein-v7-Qwen2-7B-Q3_K_L.gguf) | Q3_K_L | 3.808 GB | small, substantial quality loss | | [Einstein-v7-Qwen2-7B-Q4_0.gguf](https://huggingface.co/tensorblock/Einstein-v7-Qwen2-7B-GGUF/tree/main/Einstein-v7-Qwen2-7B-Q4_0.gguf) | Q4_0 | 4.127 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Einstein-v7-Qwen2-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Einstein-v7-Qwen2-7B-GGUF/tree/main/Einstein-v7-Qwen2-7B-Q4_K_S.gguf) | Q4_K_S | 4.152 GB | small, greater quality loss | | [Einstein-v7-Qwen2-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Einstein-v7-Qwen2-7B-GGUF/tree/main/Einstein-v7-Qwen2-7B-Q4_K_M.gguf) | Q4_K_M | 4.361 GB | medium, balanced quality - recommended | | [Einstein-v7-Qwen2-7B-Q5_0.gguf](https://huggingface.co/tensorblock/Einstein-v7-Qwen2-7B-GGUF/tree/main/Einstein-v7-Qwen2-7B-Q5_0.gguf) | Q5_0 | 4.950 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Einstein-v7-Qwen2-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Einstein-v7-Qwen2-7B-GGUF/tree/main/Einstein-v7-Qwen2-7B-Q5_K_S.gguf) | Q5_K_S | 4.950 GB | large, low quality loss - recommended | | [Einstein-v7-Qwen2-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Einstein-v7-Qwen2-7B-GGUF/tree/main/Einstein-v7-Qwen2-7B-Q5_K_M.gguf) | Q5_K_M | 5.071 GB | large, very low quality loss - recommended | | [Einstein-v7-Qwen2-7B-Q6_K.gguf](https://huggingface.co/tensorblock/Einstein-v7-Qwen2-7B-GGUF/tree/main/Einstein-v7-Qwen2-7B-Q6_K.gguf) | Q6_K | 5.825 GB | very large, extremely low quality loss | | [Einstein-v7-Qwen2-7B-Q8_0.gguf](https://huggingface.co/tensorblock/Einstein-v7-Qwen2-7B-GGUF/tree/main/Einstein-v7-Qwen2-7B-Q8_0.gguf) | Q8_0 | 7.542 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Einstein-v7-Qwen2-7B-GGUF --include "Einstein-v7-Qwen2-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Einstein-v7-Qwen2-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```