# coding=utf-8 # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. import os import base64 import logging import tiktoken import unicodedata from transformers import PreTrainedTokenizer, AddedToken from typing import Collection, Dict, List, Set, Tuple, Union logger = logging.getLogger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "hy.tiktoken"} PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|""" \ r"""[^\r\n\p{L}\p{N}]?\p{L}+|""" \ r"""\p{N}|""" \ r""" ?[^\s\p{L}\p{N}]+[\r\n]*|""" \ r"""\s*[\r\n]+|""" \ r"""\s+(?!\S)|""" \ r"""\s+""" # default eod_token and bod_token of our base model ENDOFTEXT = "<|endoftext|>" STARTOFTEXT = "<|startoftext|>" # extra flag token for other training BOSTOKEN = "<|bos|>" EOSTOKEN = "<|eos|>" PADTOKEN = "<|pad|>" # extra special tokens for the tokenizer # as the default behavior is changed to allow special tokens in # regular texts, the surface forms of special tokens need to be # as different as possible to minimize the impact EXTRAS = tuple((f"<|extra_{i}|>" for i in range(204))) SPECIAL_START_ID = 127957 def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]: dic = {} rank = 0 for i, line in enumerate(open(tiktoken_bpe_file, "rb")): if line: token, _ = line.split() # skip duplicated tokens, this should not happen if base64.b64decode(token) in dic: raise ValueError(f"!ERROR: duplicated token {token} in your vocab file") dic[base64.b64decode(token)] = int(rank) rank += 1 return dic # special tokens for pretrain and finetune models SPECIAL_TOKENS = tuple( enumerate( ( ( ENDOFTEXT, STARTOFTEXT, BOSTOKEN, EOSTOKEN, PADTOKEN, ) + EXTRAS ), start=SPECIAL_START_ID, ) ) SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS) class HYTokenizer(PreTrainedTokenizer): """ HunYuan Tokenizer Initialization. We extend `tiktoken` vocab and the default EOD & BOD special tokens are used for base model. Args: vocab_file (`str`): Path to the vocabulary file. errors (`str`): How to handle errors in decoding UTF-8 byte sequences. use ignore if you are in streaming inference bod_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""<|startoftext|>""`): The beginning of document token that was used for training. can be modified by your task. default to be `<|startoftext|>` for released base model. eod_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""<|endoftext|>""`): The end of document token that was used for training. can be modified by your task. default to be `<|endoftext|>` for released base model. bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `None`): The start or sep special token that was used for some training tasks. default to be `<|startoftext|>` for released base model. It can be set to `<|bos|>` when you training for some other task eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `None`): The end or sep special token that was used for some training tasks. default to be `<|endoftext|>` for released base model. It can be set to `<|eos|>` when you training for some other task pad_token (`str` or `tokenizers.AddedToken`, *optional*): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. special_vocab_file (str, *optional*): Customed special extra vocab file, same format with hy.tiktoken. **Be careful** to use the extra special vocab, it will may cause the model loading collapse. The data line be like: `PHxhYmN8Pg== 0` the id followed `base64.encode(str)` is unused, we will reset them in case of collision add_bod_token (`bool`, *optional*, defaults to `True`): Whether or not to add an `bos_token` at the start of documents. This will effect `build_inputs_with_special_tokens` method add_eod_token (`bool`, *optional*, defaults to `False`): Whether or not to add an `eos_token` at the end of documents. This will effect `build_inputs_with_special_tokens` method """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, errors="replace", bod_token="<|startoftext|>", eod_token="<|endoftext|>", bos_token="<|startoftext|>", eos_token="<|endoftext|>", pad_token="<|pad|>", add_bod_token=True, add_eod_token=True, **kwargs, ): super().__init__(**kwargs) self.errors = errors self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int] self.special_tokens = { token: index for index, token in SPECIAL_TOKENS } enc = tiktoken.Encoding( "HunYuan", pat_str=PAT_STR, mergeable_ranks=self.mergeable_ranks, special_tokens=self.special_tokens, ) assert ( len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab ), f"{len(self.mergeable_ranks)} + {len(self.special_tokens)} != {enc.n_vocab} in encoding" self.decoder = { v: k for k, v in self.mergeable_ranks.items() } # type: dict[int, bytes|str] self.decoder.update({v: k for k, v in self.special_tokens.items()}) self.tokenizer = enc self.bod_token, self.bod_id = bod_token, self.special_tokens[bod_token] self.eod_token, self.eod_id = eod_token, self.special_tokens[eod_token] self.bos_token, self.bos_id = bos_token, self.special_tokens[bos_token] self.eos_token, self.eos_id = eos_token, self.special_tokens[eos_token] self.pad_token, self.pad_id = pad_token, self.special_tokens[pad_token] self._num_special_token = len(self.special_tokens) self.add_bod_token = add_bod_token self.add_eod_token = add_eod_token def __getstate__(self): state = self.__dict__.copy() del state["tokenizer"] return state def __setstate__(self, state): self.__dict__.update(state) enc = tiktoken.Encoding( "HunYuan", pat_str=PAT_STR, mergeable_ranks=self.mergeable_ranks, special_tokens=self.special_tokens, ) self.tokenizer = enc def __len__(self) -> int: return self.tokenizer.n_vocab def get_vocab(self) -> Dict[bytes, int]: """Return the vocabulary as a dictionary, without special tokens.""" return self.mergeable_ranks def convert_tokens_to_ids( self, tokens: Union[bytes, str, List[Union[bytes, str]]] ) -> List[int]: ids = [] if isinstance(tokens, (str, bytes)): if tokens in self.special_tokens: return self.special_tokens[tokens] else: return self.mergeable_ranks.get(tokens) for token in tokens: if token in self.special_tokens: ids.append(self.special_tokens[token]) else: ids.append(self.mergeable_ranks.get(token)) return ids def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): bod_token_id = [self.bod_id] if self.add_bod_token else [] eod_token_id = [self.eod_id] if self.add_eod_token else [] output = bod_token_id + token_ids_0 + eod_token_id if token_ids_1 is not None: output = output + bod_token_id + token_ids_1 + eod_token_id return output def _add_tokens( self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False, ) -> List[Tuple[int, str]]: """do not support adding tokens""" if not special_tokens and new_tokens: raise ValueError("Adding regular tokens is not supported") for token in new_tokens: surface_form = token.content if isinstance(token, AddedToken) else token if surface_form not in SPECIAL_TOKENS_SET: raise ValueError("Adding unknown special tokens is not supported") return 0 def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]: """ Save only the vocabulary of the tokenizer (vocabulary). Returns: `Tuple(str)`: Paths to the files saved. """ file_path = os.path.join(save_directory, "hy.tiktoken") with open(file_path, "w", encoding="utf8") as w: for k, v in self.mergeable_ranks.items(): line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n" w.write(line) return (file_path,) def tokenize( self, text: str, allowed_special: Union[Set, str] = "all", disallowed_special: Union[Collection, str] = (), **kwargs, ) -> List[Union[bytes, str]]: """ Converts a string in a sequence of tokens. Args: text (`str`): The sequence to be encoded. allowed_special (`Literal["all"]` or `set`): The surface forms of the tokens to be encoded as special tokens in regular texts. Default to "all". disallowed_special (`Literal["all"]` or `Collection`): The surface forms of the tokens that should not be in regular texts and trigger errors. Default to an empty tuple. kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific encode method. Returns: `List[bytes|str]`: The list of tokens. """ tokens = [] text = unicodedata.normalize("NFC", text) # this implementation takes a detour: text -> token id -> token surface forms for t in self.tokenizer.encode( text, allowed_special=allowed_special, disallowed_special=disallowed_special ): tokens.append(self.decoder[t]) return tokens def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str: """ Converts a sequence of tokens in a single string. """ text = "" temp = b"" for t in tokens: if isinstance(t, str): if temp: text += temp.decode("utf-8", errors=self.errors) temp = b"" text += t elif isinstance(t, bytes): temp += t else: raise TypeError("token should only be of type types or str") if temp: text += temp.decode("utf-8", errors=self.errors) return text @property def vocab_size(self): return self.tokenizer.n_vocab def _convert_id_to_token(self, index: int) -> Union[bytes, str]: """Converts an id to a token, special tokens included""" if index in self.decoder: return self.decoder[index] raise ValueError("unknown ids") def _convert_token_to_id(self, token: Union[bytes, str]) -> int: """Converts a token to an id using the vocab, special tokens included""" if token in self.special_tokens: return self.special_tokens[token] if token in self.mergeable_ranks: return self.mergeable_ranks[token] raise ValueError("unknown token") def _tokenize(self, text: str, **kwargs): """ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces). Do NOT take care of added tokens. """ raise NotImplementedError def _decode( self, token_ids: Union[int, List[int]], skip_special_tokens: bool = False, errors: str = None, **kwargs, ) -> str: if isinstance(token_ids, int): token_ids = [token_ids] if skip_special_tokens: token_ids = [i for i in token_ids if i < self.eod_id] return self.tokenizer.decode(token_ids, errors=errors or self.errors)