{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f36cff17d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 4000768, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684914393488415561, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFoKsb37LKs/ulvEvjq52L4jqDW+hil8vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00019199999999996997, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV7wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGHyvqC6H0uMAWyUTegDjAF0lEdAwL9WKkVN6HV9lChoBkdAci7IRywOfGgHS7NoCEdAwL+Eg/1QInV9lChoBkdAcR7MmWt2cWgHS8RoCEdAwL+160IC2nV9lChoBkdAclbP91loUWgHS79oCEdAwL/lOSntOXV9lChoBkfAffQoPTXrdGgHS3NoCEdAwMADHfdhzHV9lChoBkdAQ15zV+Zw42gHS31oCEdAwMCD0xubZ3V9lChoBkdAcudmplz2e2gHS71oCEdAwMCj4Irvs3V9lChoBkdAcY9obGWD6GgHS9doCEdAwMDIicG1QnV9lChoBkdAcnxLzwtrbmgHS6doCEdAwMDkc+aBqnV9lChoBkdAcStVeruIAWgHS91oCEdAwMEJylvZRXV9lChoBkdAc8Etg8bJfmgHS7loCEdAwMEpMj/uLXV9lChoBkdAccI8E3bVSWgHS7JoCEdAwMGYNIbwSnV9lChoBkdAcIDGY8dPtWgHS71oCEdAwMG3AfuCw3V9lChoBkdAcAFyd4FA3WgHS8hoCEdAwMHX0QK8c3V9lChoBkdAYxWCbtqpLmgHTegDaAhHQMDC0yhi9Zl1fZQoaAZHQG74uSwGGEhoB0u+aAhHQMDC8rDIikh1fZQoaAZHQHHDf9DQZ4xoB0u8aAhHQMDDEmbCrLh1fZQoaAZHQHHG4BzV+ZxoB0vQaAhHQMDDhPPszEd1fZQoaAZHQHPL03GXHBFoB0vaaAhHQMDDqlwtJ4B1fZQoaAZHQHHMeLehwl1oB0voaAhHQMDD0aVUuL91fZQoaAZHQEWgw5/9YOloB0tkaAhHQMDD4mbkOqh1fZQoaAZHQHEEL39JjDtoB0u7aAhHQMDEAlyzXz11fZQoaAZHwEcLw9aEBbRoB0t4aAhHQMDEF0G/vfF1fZQoaAZHQHO2ubExZdRoB0u/aAhHQMDEi1HOKO11fZQoaAZHQHDx1uivgWJoB0vNaAhHQMDEr08FINF1fZQoaAZHQHCQa+zt1IRoB0vHaAhHQMDE0VeSjg11fZQoaAZHQHL1WR3eN1hoB0vIaAhHQMDE8s3ZPEd1fZQoaAZHQG9M3trsSkFoB0vKaAhHQMDFFaN+9al1fZQoaAZHQGdnGMn7YTVoB03oA2gIR0DAxl7FfiPydX2UKGgGR8B0RRdkauOkaAdLaWgIR0DAxnkRjBl+dX2UKGgGR0BovLQ3PzFuaAdN6ANoCEdAwMemRISUT3V9lChoBkdAcZ28wHqu82gHS+FoCEdAwMgbuv2XcHV9lChoBkdAcizRP420iWgHS6poCEdAwMg4dxyXD3V9lChoBkdAcalyjHn2ZmgHS91oCEdAwMhc4qgAZXV9lChoBkdAN0wV9F4LTmgHS2ZoCEdAwMhtstTUAnV9lChoBkdAMseqWC2+f2gHS4ZoCEdAwMiEIKMNt3V9lChoBkdAcl+4W1twaWgHS85oCEdAwMinNDc/MXV9lChoBkdAcpAskIHC42gHS9VoCEdAwMkbrwe/6HV9lChoBkdAcbL+MqBmPGgHS8JoCEdAwMk8pnYg73V9lChoBkdAcKwj4Hoou2gHS9JoCEdAwMlf0T101nV9lChoBkdAcuUGzru6VmgHS9xoCEdAwMmFLgXMyXV9lChoBkdAcGxesPrfL2gHS8xoCEdAwMmpXFtKqXV9lChoBkdAc1UGpMpPRGgHTfgBaAhHQMDKV+jVQRB1fZQoaAZHQHCqpylvZRNoB0vMaAhHQMDKegt4A0d1fZQoaAZHQG+gLuQZGaxoB0uzaAhHQMDKmCaqjrR1fZQoaAZHQGSXMyzolldoB03oA2gIR0DAy5aGDcubdX2UKGgGR0AjIosqaw2VaAdLcmgIR0DAy6li4J/odX2UKGgGR0Bx0uSvC/GmaAdLuGgIR0DAzB04zabndX2UKGgGR0BxgMjC53C9aAdLt2gIR0DAzEdvuPV/dX2UKGgGR0BwfX0g8r7PaAdL5mgIR0DAzHjQE6kqdX2UKGgGR0Bw3/DR+jM3aAdL32gIR0DAzKnrWy1NdX2UKGgGR8CB9FZ9uxbCaAdLcWgIR0DAzMWsmv4edX2UKGgGR0BxR1AlfJFLaAdL2mgIR0DAzXU7QswtdX2UKGgGR0Bx4C6kIomYaAdLxmgIR0DAzafkPtladX2UKGgGR0ByTGyNXHR1aAdLr2gIR0DAzdUdzXBhdX2UKGgGR0BxsU2vStvGaAdL0mgIR0DAzf4a1kUcdX2UKGgGR0BtkK/GlyimaAdLu2gIR0DAzh1s1sLwdX2UKGgGR0BydiLNwBHTaAdLpmgIR0DAzjk3GXHBdX2UKGgGR0BxEzvttyggaAdL0GgIR0DAzq4P5HmSdX2UKGgGR0BuxALy+YdAaAdLwWgIR0DAzs8s189fdX2UKGgGR0BzJbUqhDgJaAdL4mgIR0DAzvjDhtLtdX2UKGgGR0Bu7tkc0cfeaAdLx2gIR0DAzxsSIxgzdX2UKGgGR0ByGE9r433paAdL2mgIR0DAz5eB19v1dX2UKGgGR0Bu2KqU/wAmaAdLwWgIR0DAz7goVmBfdX2UKGgGR0BEtiWE9MbnaAdLjWgIR0DAz9CxiXpodX2UKGgGR0BxVE5cTrVwaAdLwGgIR0DAz/BOzposdX2UKGgGR0Bywywr1/UfaAdL2GgIR0DA0BQdCE6DdX2UKGgGR0By15nwob4raAdLymgIR0DA0DYvpQk5dX2UKGgGR0BG0JQLux8laAdLgmgIR0DA0J8uQIUrdX2UKGgGR8AIZCMPz4DcaAdLYWgIR0DA0K/974SIdX2UKGgGR0BxiWnuRcNZaAdLuWgIR0DA0M81/DtPdX2UKGgGR8BXvqjBVMmGaAdLdWgIR0DA0OOhoM8YdX2UKGgGR0Bw7eHmA9V4aAdL0WgIR0DA0QaF0xM4dX2UKGgGR0A4J63AmAskaAdLlmgIR0DA0R/eSB9UdX2UKGgGR0Bw06OAAhjfaAdLqGgIR0DA0TxWDHwPdX2UKGgGR0Bv3JMFlkH2aAdLxWgIR0DA0bEUXYUWdX2UKGgGR0BzLMK4QSSNaAdLuGgIR0DA0dAe9zwMdX2UKGgGR0Bwe5JPIn0DaAdLtmgIR0DA0e80xdpqdX2UKGgGR0BwOfKU3XI2aAdL1GgIR0DA0hKPjn3ddX2UKGgGR0BwzeQHRkVfaAdLwWgIR0DA0jKtYB/7dX2UKGgGR0BwvGuU2UB5aAdLvWgIR0DA0qRS9/SZdX2UKGgGR0BxBEVmBe5XaAdLxGgIR0DA0sVWn0kGdX2UKGgGR0ByiMAdXDFZaAdLpWgIR0DA0uJWq95AdX2UKGgGR0BlGLsQd0aIaAdN6ANoCEdAwNRDVmz0H3V9lChoBkdAc7kAE+xGD2gHS71oCEdAwNR5jqfOEHV9lChoBkdAcryS1E3KjmgHS8toCEdAwNSrOSGJvnV9lChoBkdAcfBkFwDNhWgHS8RoCEdAwNTRALy+YnV9lChoBkdAZoezO5avBGgHTegDaAhHQMDVz0uDjBF1fZQoaAZHQGHe2u5jH4poB03oA2gIR0DA1ssvVVghdX2UKGgGR0Bx4fEyckMTaAdL1GgIR0DA1z/yGzrvdX2UKGgGR0BwPIxk/bCaaAdLvGgIR0DA11+NJe3QdX2UKGgGR0BwMjxMFlkIaAdLvmgIR0DA14A1FYuCdX2UKGgGR0Bx5TIIWxhVaAdNDwFoCEdAwNes/j81oHV9lChoBkdAck7jEvTPSmgHS79oCEdAwNfNiWE9MnV9lChoBkdASOlGgBcRlGgHTegDaAhHQMDYysspXp51fZQoaAZHQGOIvzFuNxVoB03oA2gIR0DA2cpAprk9dX2UKGgGR8BUXdipeeFtaAdLemgIR0DA2k8DZDiPdX2UKGgGR0BEaimdiDujaAdN6ANoCEdAwNut2PDHfnV9lChoBkdAUVbe/Ho5gmgHTegDaAhHQMDcqCYsunN1fZQoaAZHQEAW8Emplz5oB03oA2gIR0DA3VFy1eBydWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 39070, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}