from typing import Dict, List, Any from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch # dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 class EndpointHandler: def __init__(self, path=""): tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( path, return_dict=True, device_map="auto", load_in_8bit=True, torch_dtype=torch.bfloat16, trust_remote_code=True ) generation_config = model.generation_config generation_config.max_new_tokens = 200 generation_config.temperature = 0.7 generation_config.top_p = 0.7 generation_config.num_return_sequences = 1 generation_config.pad_token_id = tokenizer.eos_token_id generation_config.eos_token_id = tokenizer.eos_token_id self.generation_config = generation_config self.pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer ) def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: prompt = data.pop("inputs", data) result = self.pipeline(prompt, generation_config=self.generation_config) return result