--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: turkic-cyrillic-classifier results: [] language: - ba - cv - sah - tt - ky - kk - tyv - krc - ru datasets: - tatiana-merz/cyrillic_turkic_langs pipeline_tag: text-classification --- # turkic-cyrillic-classifier This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an tatiana-merz/cyrillic_turkic_langs dataset. It achieves the following results on the evaluation set: - Loss: 0.0139 - Accuracy: 0.9971 - F1: 0.9971 ## Model description The model classifies text based on a provided Turkic language written in Cyrillic script. ## Intended uses & limitations ## Training and evaluation data [cyrillic_turkic_langs](https://huggingface.co/datasets/tatiana-merz/cyrillic_turkic_langs/) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1087 | 1.0 | 1000 | 0.0206 | 0.9954 | 0.9954 | | 0.0111 | 2.0 | 2000 | 0.0139 | 0.9971 | 0.9971 | ### Framework versions - Transformers 4.27.0 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2