--- license: mit tags: - generated_from_trainer datasets: - go_emotions metrics: - accuracy - precision - recall - f1 model-index: - name: text-classification-goemotions results: - task: name: Text Classification type: text-classification dataset: name: go_emotions type: go_emotions args: simplified metrics: - name: Accuracy type: accuracy value: 0.4327312937707335 - name: Precision type: precision value: 0.5160135896476034 - name: Recall type: recall value: 0.5555752222497288 - name: F1 type: f1 value: 0.5226068504396464 --- # text-classification-goemotions This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the go_emotions dataset. It achieves the following results on the evaluation set: - Loss: 0.0830 - Accuracy: 0.4327 - Precision: 0.5160 - Recall: 0.5556 - F1: 0.5226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 340 | 0.0884 | 0.3782 | 0.4798 | 0.4643 | 0.4499 | | 0.1042 | 2.0 | 680 | 0.0829 | 0.4093 | 0.4766 | 0.5272 | 0.4879 | | 0.1042 | 3.0 | 1020 | 0.0821 | 0.4202 | 0.5103 | 0.5531 | 0.5092 | | 0.0686 | 4.0 | 1360 | 0.0830 | 0.4327 | 0.5160 | 0.5556 | 0.5226 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.1.0 - Tokenizers 0.12.1