--- license: mit tags: - generated_from_trainer datasets: - go_emotions metrics: - f1 model-index: - name: roberta-large-go-emotions-3 results: - task: name: Text Classification type: text-classification dataset: name: go_emotions type: multilabel_classification config: simplified split: test args: simplified metrics: - name: F1 type: f1 value: 0.5204 - task: name: Text Classification type: text-classification dataset: name: go_emotions type: multilabel_classification config: simplified split: validation args: simplified metrics: - name: F1 type: f1 value: 0.5208 --- # roberta-large-go-emotions-2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset. It achieves the following results on the test set (with a threshold of 0.15): - Accuracy: 0.4363 - Precision: 0.4955 - Recall: 0.5655 - F1: 0.5204 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Validation Loss | Accuracy | Precision | Recall | F1 | | ------------- | ----- | --------------- | -------- | --------- | ------ | ------ | | No log | 1.0 | 0.0889 | 0.4043 | 0.4807 | 0.4568 | 0.4446 | | 0.1062 | 2.0 | 0.0828 | 0.4113 | 0.4608 | 0.5363 | 0.4868 | | 0.1062 | 3.0 | 0.0813 | 0.4201 | 0.5198 | 0.5612 | 0.5227 | | No log | 4.0 | 0.0862 | 0.4292 | 0.5012 | 0.5558 | 0.5208 | | 0.0597 | 5.0 | 0.0924 | 0.4329 | 0.5164 | 0.5362 | 0.5151 | | 0.0597 | 6.0 | 0.0956 | 0.4445 | 0.5241 | 0.5328 | 0.5161 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.1.0 - Tokenizers 0.12.1