--- base_model: zhihan1996/DNABERT-2-117M tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: DNABERT-2-117M_ft_BioS45_1kbpHG19_DHSs_H3K27AC results: [] --- # DNABERT-2-117M_ft_BioS45_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [zhihan1996/DNABERT-2-117M](https://huggingface.co/zhihan1996/DNABERT-2-117M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7663 - F1 Score: 0.6154 - Precision: 0.8763 - Recall: 0.4742 - Accuracy: 0.6908 - Auc: 0.8534 - Prc: 0.8406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.7033 | 0.4205 | 500 | 0.5780 | 0.7163 | 0.7317 | 0.7016 | 0.7101 | 0.7860 | 0.7818 | | 0.5929 | 0.8410 | 1000 | 0.5370 | 0.7339 | 0.7525 | 0.7161 | 0.7291 | 0.8066 | 0.7979 | | 0.5608 | 1.2616 | 1500 | 0.5352 | 0.7532 | 0.7508 | 0.7556 | 0.7417 | 0.8204 | 0.8097 | | 0.5471 | 1.6821 | 2000 | 0.5455 | 0.6955 | 0.8211 | 0.6032 | 0.7244 | 0.8317 | 0.8200 | | 0.5252 | 2.1026 | 2500 | 0.5145 | 0.7897 | 0.7367 | 0.8508 | 0.7636 | 0.8384 | 0.8261 | | 0.4833 | 2.5231 | 3000 | 0.5229 | 0.7976 | 0.7146 | 0.9024 | 0.7610 | 0.8469 | 0.8351 | | 0.5161 | 2.9437 | 3500 | 0.4988 | 0.7593 | 0.8049 | 0.7185 | 0.7623 | 0.8506 | 0.8393 | | 0.4921 | 3.3642 | 4000 | 0.4784 | 0.7967 | 0.7447 | 0.8565 | 0.7720 | 0.8541 | 0.8426 | | 0.4779 | 3.7847 | 4500 | 0.7663 | 0.6154 | 0.8763 | 0.4742 | 0.6908 | 0.8534 | 0.8406 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0