--- license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: ops_subcate results: [] --- # ops_subcate This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1575 - Accuracy: 0.7428 - F1: 0.7647 - Precision: 0.7715 - Recall: 0.7581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 49 | 0.1300 | 0.7291 | 0.7604 | 0.7883 | 0.7345 | | No log | 2.0 | 98 | 0.1272 | 0.7391 | 0.7707 | 0.7989 | 0.7444 | | No log | 3.0 | 147 | 0.1294 | 0.7391 | 0.7654 | 0.7918 | 0.7407 | | No log | 4.0 | 196 | 0.1388 | 0.7341 | 0.7567 | 0.7733 | 0.7407 | | No log | 5.0 | 245 | 0.1326 | 0.7541 | 0.7791 | 0.8026 | 0.7568 | | No log | 6.0 | 294 | 0.1407 | 0.7478 | 0.7743 | 0.7940 | 0.7556 | | No log | 7.0 | 343 | 0.1445 | 0.7341 | 0.7576 | 0.7712 | 0.7444 | | No log | 8.0 | 392 | 0.1533 | 0.7528 | 0.7684 | 0.7776 | 0.7593 | | No log | 9.0 | 441 | 0.1573 | 0.7628 | 0.7747 | 0.7816 | 0.7680 | | No log | 10.0 | 490 | 0.1575 | 0.7428 | 0.7647 | 0.7715 | 0.7581 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1