--- license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: ops_subcate results: [] --- # ops_subcate This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1325 - Accuracy: 0.7228 - F1: 0.7556 - Precision: 0.7866 - Recall: 0.7270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 49 | 0.6030 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 2.0 | 98 | 0.3307 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 3.0 | 147 | 0.3022 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 4.0 | 196 | 0.2354 | 0.3121 | 0.4343 | 0.7171 | 0.3114 | | No log | 5.0 | 245 | 0.1831 | 0.5306 | 0.6169 | 0.7313 | 0.5335 | | No log | 6.0 | 294 | 0.1580 | 0.6355 | 0.6895 | 0.7504 | 0.6377 | | No log | 7.0 | 343 | 0.1408 | 0.6779 | 0.7257 | 0.7702 | 0.6861 | | No log | 8.0 | 392 | 0.1325 | 0.7228 | 0.7556 | 0.7866 | 0.7270 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1