--- license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: lc_cate results: [] --- # lc_cate This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3148 - Accuracy: 0.7535 - F1: 0.7694 - Precision: 0.7812 - Recall: 0.7579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 32 | 0.2704 | 0.7415 | 0.7640 | 0.7874 | 0.7421 | | No log | 2.0 | 64 | 0.2764 | 0.7275 | 0.7497 | 0.7726 | 0.7282 | | No log | 3.0 | 96 | 0.2802 | 0.7495 | 0.7675 | 0.7859 | 0.75 | | No log | 4.0 | 128 | 0.2915 | 0.7435 | 0.7614 | 0.7796 | 0.7440 | | No log | 5.0 | 160 | 0.3044 | 0.7214 | 0.7472 | 0.7717 | 0.7242 | | No log | 6.0 | 192 | 0.2972 | 0.7595 | 0.7737 | 0.7881 | 0.7599 | | No log | 7.0 | 224 | 0.3061 | 0.7375 | 0.7626 | 0.7735 | 0.7520 | | No log | 8.0 | 256 | 0.3049 | 0.7615 | 0.7759 | 0.7862 | 0.7659 | | No log | 9.0 | 288 | 0.3073 | 0.7475 | 0.7657 | 0.7798 | 0.7520 | | No log | 10.0 | 320 | 0.3067 | 0.7515 | 0.7705 | 0.7856 | 0.7560 | | No log | 11.0 | 352 | 0.3187 | 0.7455 | 0.7647 | 0.7822 | 0.7480 | | No log | 12.0 | 384 | 0.3148 | 0.7535 | 0.7694 | 0.7812 | 0.7579 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1