whisper-base-ur / README.md
tahaman's picture
End of training
6d93eb8 verified
|
raw
history blame
2.46 kB
metadata
language:
  - ur
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Base Ur - TahaMan
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: ur
          split: None
          args: 'config: ur, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 60.76523994811932

Whisper Base Ur - TahaMan

This model is a fine-tuned version of openai/whisper-base on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1893
  • Wer: 60.7652

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1544 4.0 50 0.9766 57.2633
0.5159 8.0 100 0.9178 75.0324
0.2399 12.0 150 0.9604 76.7185
0.1005 16.0 200 1.0300 59.1440
0.0372 20.0 250 1.0988 70.0389
0.0168 24.0 300 1.1373 66.3424
0.0109 28.0 350 1.1638 61.0246
0.0085 32.0 400 1.1781 61.0895
0.0074 36.0 450 1.1864 60.9598
0.0069 40.0 500 1.1893 60.7652

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1