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1. Introduction

Recent research in the field of deep learning for image restoration leverages diffusion models as
generative models conditioned by the observed data. While classical diffusion models sample the prior
distribution of clean images by integrating a reverse diffusion process thanks to an iterative denoising
process, conditional diffusion models aim at sampling the posterior distribution by incorporating a
guidance term into the process. A category of conditional diffusion models, such as [6], propose to train
a task-specific denoiser in a supervised way. While these approaches may yield good restoration quality,
they require retraining a new model for each task. Instead, zero-shot diffusers build upon unconditional
diffusion models and add an separate guidance term to allow tackling any classical restoration problem.

Among these methods, Diffusion Posterior Sampling (DPS) [1] and Pseudoinverse-Guided Diffusion
Models (ΠGDM) explicitly approximate the score of the likelihood of the observation by a Dirac distribution
and a Gaussian distribution respectively, both centered in the estimate of the clean image x̂0 as delivered
by the noise predictor. On the other hand, Denoising Diffusion Models for Plug-and-Play Image Restoration
(DiffPIR) use a Plug-and-Play (PnP) denoising approach to construct the noise predictor of the denoising
diffusion model, where a pretrained unconditional denoising score-matching function is used as a the
underlying prior in the PnP algorithm. As explained by Peng et al. [5], these three approaches can be
understood under a same framework as leveraging isotropic Gaussian approximations to the posterior
distributions over clean images given noisy images.

In this report, we carry out a quantitative and qualitative comparative study of these three methods.
All three algorithms were implemented in a common framework and tested on a subset of the Flickr-
Faces-HQ (FFHQ) dataset for deblurring and inpainting tasks. Then, the results are compared in terms
of quality, fitness to the observation and variability of the generations. This document is organized as
follows: Section 2 summarizes the three diffusion models, highlights their similarities and differences
and recalls the insight offered by Peng et al.. In Section 3, we present the design of our experiments and
introduce our metrics. In Section 4, the results are displayed and analysed. Last, we conclude in Section 5.
The code related to this project can be found here: github.com/t0m1ab/MVA DELIRES project

2. Guided diffusion methods

Image restoration Image restoration problems are usually formulated as inverse problems where we
wish to recover a clean image x0 ∈ Rd, with d the number of pixels, from the observation of a degraded
image y ∈ Rm of the form

y = H(x0) + n (1)

where H is the operator that models the degradation, such as blurring or masking, and is typically a
linear operator H in Rm×d, and n is some Gaussian noise of standard deviation σy. In practice, we will
consider cases where m = d.

Denoising diffusion models The methods under scrutiny are based on an unconditional denoising
diffusion model, such as Denoising Diffusion Probabilistic Models (DDPM) [4] or more recently Denoising
Diffusion Implicit Models (DDIM) [8] that they augment with guidance. For simplicity, in this report we
will only use the DDPM framework that we recall. DDPM defines the generative process as the reverse
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of a variance-preserving noising process in T steps,

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (2)

with (βt)t chosen to preserve the variance and bring the process to complete Gaussian noise xT ∼ N (0, β̄tI),
where β̄t =

∏t
s=1 βs. Equivalently,

xt =
√
ᾱtx0 +

√
(1− ᾱt)ε (3)

with ε ∼ N (0, I) and ᾱt =
∏t

s=1 αs where αs = 1− βs.

DDPM aims at sampling an approximation pθ of the law p of the reverse process that brings the
Gaussian distribution pT to the prior distribution p0, by iterating

xt−1 =
1
√
αt

(xt −
1− αt√
1− ᾱt

ε) + σtz (4)

with σt a hyperparameter, and ε would be approximated using a noise predictor εθ trained to learn the
noise that brings x0 to xt in (3).

Equivalently, using Tweedie’s formula, the DDPM update rule (4) can be rewritten in terms of the
score function as:

xt−1 =
1
√
αt

(xt + βt∇ log(p(xt))) + σtz. (5)

where the score ∇ log(p(xt)) would be approximated by a score matching predictor sθ. The link between

the two predictors can be written as sθ(xt, t) = −εθ(xt,t)√
1−ᾱt

.

DPS and ΠGDM In practice, DPS and ΠGDM aim at sampling the posterior distribution p(x0;y)
rather than the prior p(x0). Therefore, using Bayes formula p(xt;y) ∝ p(y;xt)p(xt), they replace the
update above with

xt−1 = x′
t−1 +

βt√
αt
∇ log p(y;xt)︸ ︷︷ ︸

−g

(6)

where x′
t−1 is the result of (5) and g is coined the “guidance term”. Remarking that by marginalization

and independence of xt and y conditionally on x0, p(y;xt) =
∫
p(x0;xt)p(y;x0) dx0, the two methods

approximate the guidance term by approximating the intractable p(x0;xt) using the estimate of x̂0 :=
E[x0|xt] derived using the trained score matching predictor:

x̂0 ≈
1√
ᾱt

(xt −
(
1− ᾱt)sθ(xt, t)

)
. (7)

DPS uses the approximation p(x0;xt) ≈ δx̂0
(and the article [1] details how much of an approximation

this constitutes) to obtain the guidance term:

g = ∇xt

1

2σ2
y

∥H(x̂0)− y∥22 (8)

which can easily be computed by automatic differentiation. DPS is summarized in Algorithm 1. In this
algorithm, (ζt)1≤t≤T are scaling factors used to stabilize the process, and are set to 1 in our experiments.
In blue, we highlight the part of the algorithm that differs from unconditional DDPM sampling.

ΠGDM uses the approximation p(x0;xt) ≈ N (x̂0, r
2
t I) with rt a hyperparameter that is set empirically,

which in the case of a linear H yields an estimation in the following vector-Jacobian product:

g = −
(
(y −Hx̂0)

T (
r2tHHT + σ2

yI
)−1

H︸ ︷︷ ︸
vector

∂x̂0

∂xt︸︷︷︸
Jacobian

)T

. (9)

In particular, ΠGDM only performs automatic differentiation to compute the Jacobian, but requires
computing a pseudo-inverse (which gives the algorithm its name). The method may thus be applied to
non-linear degradations to the extent that this pseudo-inverse can be computed. ΠGDM is summarized
in Algorithm 2, in the case of a linear operator H. Here again, we highlight the specific part of the
algorithm in blue.
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DiffPIR While DPS and ΠGDM use an approximation of the likelihood score function, DiffPIR resorts
to proximal splitting PnP algorithms. More precisely, drawing inspiration from Half-Quadratic-Splitting
(HQS) [2], the authors first derive an estimated sample x̂y

0 from the posterior distribution p(x0;y) as the
result of the proximal operator associated to the data-fitting term evaluated in x̂0:

x̂y
0 = argmin

x
∥H(x)− y∥22 + ρt∥x− x̂0∥22 (10)

where ρt = λ(
σy

σ̄t
)2 with λ and σ̄t two hyperparameters, and x̂0 is the result of the subproblem of the

HQS algorithm associated with the prior term. Here, x̂0 = E[x0|xt] is approximated using the score
matching predictor sθ as for the case of DPS and ΠGDM.

The estimated sample x̂y
0 is then used to get an estimate of the noise ε̂ = 1√

1−ᾱ
(xt −

√
ᾱtx̂

y
0), that

was added from the posterior sample. This predicted noise can then be used to apply a DDIM update.

In other words, one step of DiffPIR corresponds to an update of DDIM where, instead of predicting
noise added to the sample of the prior distribution, the noise added to the posterior sample is estimated
using one step of an HQS PnP denoising algorithm. This PnP step leverages the score-matching
predictor of an unconditional DDPM diffusion model. DiffPIR is summarized in Algorithm 3, where
the authors introduce a reparameterization of the noise z that is added to get xt−1 by introducing a new
hyperparameter ζ. The key characteristic step of DiffPIR is here again highlighted in blue.

A unifying framework In [5], Peng et al. observe that, although DPS and ΠGDM on the one
hand, and DiffPIR on the other hand employ different guidance paradigms as explained above, all
three algorithms rely on an isotropic Gaussian approximation p̃t(x0) = N (x0; x̂0, r

2
t I) of the intractable

probability p(x0,xt). In the case of ΠGDM, rt is set heuristically, typically to a value
√

σ2
t

σ2
t+1

with σt

the estimated variance at step t. In the case of DPS, rt can be understood as approaching 0. In the case
of DiffPIR, rt =

σ̄t√
λ
. This can be understood from the fact that step (10) can then be rewritten as

x̂y =argmin
x
∥H(x)− y∥2 +

σ2
y

r2t
∥x− x̂0∥2

=argmax
x

[log p(y;x) + log p̃t(x0;xt)]

= argmax
x

log p̃t(x;xt,y)

(11)

with p̃t(x;xt,y) defined proportional to p(y;x)p̃t(x;xt,y) using Bayes rule. In this case, x̂y
0 can be

understood as the maximum likelihood estimator of the approximated posterior at step t, or equivalently
as the Minimum Mean Square Error estimator E[x0|y,xt] of this distribution since the approximating
probability p̃t(x;xt,y) is Gaussian.

Algorithm 1 DPS

Require: y, H, T , ζt, σt, αt, sθ.
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do

# Evaluate score matching model
3: Approximate ∇ log pt(xt) by sθ(xt, t)

# Estimate E[x0|xt]
4: x̂0 ← 1√

ᾱt

(
xt + (1− ᾱt)sθ(xt, t)

)
# Apply unguided DDPM update

5: z ∼ N (0, I)
6: x′

t−1 ← 1√
αt
(xt + (1− αt)sθ(xt, t)) + σtz

# Add guidance term
7: g ← ζt∇xt∥H(x̂0)− y∥22
8: xt−1 ← x′

t−1 − 1−αt√
αt

g

9: end for
10: Return x0

Algorithm 2 ΠGDM (linear degradation)

Require: y, H, σy, T , σt, αt, sθ.
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do

# Evaluate score matching model
3: Approximate ∇ log pt(xt) by sθ(xt, t)

# Estimate E[x0|xt]
4: x̂0 ← 1√

ᾱt

(
xt + (1− ᾱt)sθ(xt, t)

)
# Apply unguided DDPM update

5: z ∼ N (0, I)
6: x′

t−1 ← 1√
αt
(xt + (1− αt)sθ(xt, t)) + σtz

# Add guidance term

7: v ← HT
(
r2tH

TH+ σ2
yI
)−1

(y −Hx̂0)

8: g ← −
(
∂x̂0

∂xt

)T
v

9: xt−1 ← x′
t−1 − 1−αt√

αt
g

10: end for
11: Return x0
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Algorithm 3 DiffPIR (DDIM framework)

Require: y, H, σy, T , ζ, λ, σ̄t, αt, sθ.

1: ρt ← λ
σ2
y

σ̄2
t

2: xT ∼ N (0, I)
3: for t = T, . . . , 1 do

# Evaluate score matching model
4: Approximate ∇ log pt(xt) by sθ(xt, t)

# Estimate E[x0|xt] (= solve PnP prior subproblem)
5: x̂0 ← 1√

ᾱt

(
xt + (1− ᾱt)sθ(xt, t)

)
# Estimate E[x0|y,xt] (= solve PnP data subproblem)

6: x̂y
0 ← argminx ∥H(x)− y∥22 + ρt∥x− x̂0∥22
# Predict effective noise

7: ε̂← 1√
1−ᾱt

(xt −
√
ᾱtx̂

y
0 )

# Apply DDIM update
8: z ∼ N (0, I)
9: xt−1 ←

√
ᾱt−1x̂

y
0 +
√
1− ᾱt−1(

√
1− ζε̂+

√
ζz)

10: end for
11: Return x0

3. Experiments

3.1 Metrics

The three methods introduced in Section 2 are compared both qualitatively and quantitatively. The
quantitative study is carried out with the objective to assess four properties of the restored images
x̃0: proximity to the actual clean images x0; fidelity to the observations y; overall generation quality;
variability of the restored images when running the same algorithm on the same degraded image multiple
times. To achieve this, four metrics are used. Note that, when applicable, values for image pixels are
expressed in the [0, 255] range to compute the metrics.

Proximity to ground truth To assess the proximity between restoration x̃0 and ground truth x0,
we use the usual Peak Signal to Noise Ratio (PSNR) defined as

PSNR = 20 log10(
255

MSE
), (12)

where MSE is the Mean Square Error between the restored image x̃0 and the clean image x0, defined
as MSE = 1

d∥x̃0 − x0∥22 with d the number of pixels. When the metric has to be averaged between N

pairs (x̃i
0,x

i
0), the average is computed by replacing the MSE in (12) by 1

N

∑N
i=1 MSEi, with MSEi

the MSE computed on pair i.

Fidelity to the observation As a measure of the fidelity to the degraded image, we use the norm
corresponding to the data-fitting term in the restoration problem, or in other words the Root Mean
Square Error (RMSE) between the observation and the degraded restoration:

RMSE = ∥H(x̃0)− y∥2. (13)

Here also, when averaging the metric over several pairs, we average the MSE between the H(x̃i
0) and the

yi before taking the root.

Restoration quality To measure restoration quality, we use the Fréchet Inception Distance (FID)
[3]. The FID compares two sets of images S and S′ by passing all images through a network f (in
practice, the Inception v3 network [9], a classification model trained on ImageNet) deprived of its final
classification layer, to get two sets f(S) and f(S′) of features that are considered to be representative of
high-level characteristics of the image. Two Gaussian distributions N (µ,Σ) and N (µ′,Σ′) are then fitted
on the two respective sets f(S) and f(S′) to represent them as distributions of images. Lastly, these two
distributions are compared using the 2-Wasserstein distance, which in this case writes

dF (N (µ,Σ),N (µ′,Σ′))2 = ∥µ− µ′∥22 + tr
(
Σ+ Σ′ − 2 (ΣΣ′)

1
2

)
. (14)
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We apply this metric on the sets of restored and clean images. In practice, the number of samples to
fit the Gaussian distributions should be greater than the dimension of the coding layer of the network
for which the features are extracted. This is to avoid cases where the covariance matrix would not be of
full rank. Since the final layer of Inception v3 has 2048 features and we run experiments on batches of
only 100 images, we choose to use an earlier layer of the network instead, namely the second max pooling
which has 192 channels. Since this layer has leftover spatial dimensions, we can get several samples per
image and reach the required number of samples to estimate the distributions. For this metric, we use
the Pytorch implementation of [7].

Variability of generations Last, we measure the pixel-wise standard deviation over multiple restorations
x̃j
0 from the same observation y (averaging the standard deviation over the 3 channels of a coloured pixel)

to generate a standard deviation map that we use to assess the variability of generations. To turn this map
into a quantitative metric (later simplt referred to as “STD”), we also average the standard deviations
of all pixels of a map to get the variability σ for a given observation. Here also, the standard deviations
σi associated to multiple observations yi can be averaged to get the overall variability of the generations
from a given model.

3.2 Experimental setup

Dataset In order to compare the different guided restoration techniques, we used the Flickr-Faces-HQ
(FFHQ) dataset composed of 70,000 high quality PNG images of human faces with variations in terms
of age, ethnicity and background details. We selected data from the FFHQ test set composed of images
with ids from 69000 to 69999. More specifically, we built two small test sets with images from 69000 to
69099 (see Figure 1) and from 69100 to 69199 (see Figure 3).

Degradation operators Concerning the restoration tasks, we focused on the deblurring and inpainting.
Therefore, we used pre-existing blur kernels presented in Figure 2 and Figure 4 which were introduced
and used multiple times in the literature including in [10]. These kernels vary in terms of size and aspect:
some of them are closer to pure Gaussian blur kernels and others act as motion blur. We also used masks
for the inpainting tasks. They can be a simple rectangular area called ”box mask” or a random selection
of pixels called ”random mask” set to zero on the image.

Diffusion networks As diffusion model, we only used a single network across our experiments. It is
a classic UNet architecture with residual connections that was trained on the train split of the FFHQ
dataset. This network was already used to perform benchmark in the literature and was especially
used by the authors of [10] as they mention it here. The network contains approximately 93 millions
parameters and was a reasonable choice considering our computing resources and the time we had to run
the experiments.

Methods parameters For the DPS algorithm, we use scale factors ζt = 1 for simplicity, as this value
already gives satisfying performance and stability. For DiffPIR, re-using the parameters proposed by the
authors in [10], we use λ = 7 and ζ = 0.3 for deblurring, and λ = 1 and ζ = 1 for inpainting. We also

use σ̄t =
√
1−ᾱt√
ᾱt

, for t ∈ J1, T K, for both tasks. Finally, the following table gives the number of steps we

chose for each method:

Method Steps
DPS 500

ΠGDM 100
DiffPIR 100

Experimental protocol Our experimental protocol aims to compare DPS, ΠGDM and DiffPIR on
identical tasks for a large enough number of images. As we will see, our protocol is divided in two stages.
This first stage aims to compare both quantitatively using the metrics but also qualitatively by looking
at the results for the three methods applied to the deblurring and inpainting tasks. Here we describe in
details the first stage in a sequential manner:

� Selection of 100 clean images represented on Figure 1.

� Generate a blurred version of each ground truth image using blur kernels from Figure 2. As there
are more images than kernels, a single kernel can be applied to multiple images.
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� Generate a masked version of each ground truth image by applying a random box mask to each
one of them.

� Apply DPS, ΠGDM and DiffPIR once to each degraded image independently and compute the
associated PSNR and RMSE for each restoration. The PSNR and RMSE averaged over all images
as described in Section 3.1 are also stored.

� For each method and each type of degradation (blurring or masking), compute the FID score
between the 100 corresponding restored images and the 100 original images.

The second stage of our experimental protocol aims to study the variability of each method. As it
requires to apply each method on the same image multiple times, we reduce the number of tested images
to 10. Given that, the second stage is very similar to the first one except that we apply each method 5
times to each of the 10 images to obtain multiple versions of the same reconstruction.

We ran our experiments on Google Cloud Platform using a Nvidia T4 GPU and it took approximately
10 hours to complete. As we had still some time left on the machine, we decided to run the full experiments
a second time using ground truth images from Figure 3, blur kernels from Figure 4 and random masks
instead of box masks for the inpainting task. In the following, we will make the difference between the
results obtained from the first experiments called first batch and the second experiments called second
batch as we purposely didn’t use the same kernels and mask in both batches.

4. Results and analysis

4.1 Quantitative analysis

The followingTables 1, 2 present the resulting averaged PSNR, averaged datafit RMSE and FID score
over the 100 corresponding images for each batch of experiments. We first notice that the box inpainting
task is unsurprisingly the hardest task for all methods in terms of PSNR, while random inpainting is
the easiest. Then, we note that DiffPIR beats the other two methods on both tasks in each batch in
terms of PSNR and datafit RMSE. DiffPIR has even a large advantage in terms of datafit RMSE on the
inpainting tasks compared to the other two methods. It also beats the other methods in terms of FID
for all tasks, except for box inpainting, which may be related to noise artifacts introduced by the method
for this task, as mentioned in Section 4.2 below. DiffPIR is also the method that generates restorations
with the smallest variability in all cases. On the other hand, DPS yields intermediate performance for
all tasks and all metrics, except for the RMSE for which it tends to lag behind the two other approaches.
In other words, DPS often lacks fidelity to the observations. It is also the method that yields the highest
variability for the two inpainting tasks. Moreover, ΠGDM exhibits very poor performance for the box
inpainting task which will be investigated qualitatively in the next section, but it is surprising to observe
that the FID does not give account of this poor restoration quality.

Deblurring
PSNR RMSE FID STD

DPS 24.85 15.89 5.26 5.65
ΠGDM 23.32 14.56 8.38 8.43
DiffPIR 28.13 14.43 1.63 4.46

Box inpainting
PSNR RMSE FID STD

DPS 22.37 15.58 9.92 5.93
ΠGDM 18.41 13.71 7.82 5.51
DiffPIR 23.41 4.47 18.72 3.85

Table 1: Avg PNSR, avg datafit RMSE, avg STD and FID for each task and method with batch 1

Deblurring
PSNR RMSE FID STD

DPS 24.12 16.00 6.47 6.26
ΠGDM 24.10 14.49 15.17 9.11
DiffPIR 27.44 14.45 3.47 5.46

Random inpainting
PSNR RMSE FID STD

DPS 25.27 11.92 11.86 5.36
ΠGDM 28.79 10.00 10.22 3.38
DiffPIR 29.62 4.55 5.90 2.60

Table 2: Avg PNSR, avg datafit RMSE, avg STD and FID for each task and method with batch 2
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We can also compare the results in more details using histograms of the metrics for each task and
method as it is done on Figures 5, 6, 7, 8. In particular, one can see by looking at the PSNR histograms
that DiffPIR seems to produce restored image which are always significanlty closer to the original than
the other methods. Conversely, DPS provides restorations that are not as faithful to the degraded image
as the other methods as one can see that the datafit RMSE histograms are considerably shifted to higher
values for DPS compared to ΠGDM and DiffPIR.

4.2 Qualitative analysis

Deblurring results From Figure 9 to 16, we present some results for the deblurring task.

Figures 9, 10 present typical examples outlining the differences between the three methods. First
of all, ΠGDM showcases a lot of artefacts even if the underlying reconstruction seems very close to the
ground truth image. On the other hand, DPS outputs a likely image but quite different from the ground
truth. This reflects the metrics obtained in Figures 1, 2 where the PSNR is lower for ΠGDM (because
of the artefacts) but the datafit RMSE is better than DPS (indicating that artefacts improve the fitting
of the blurred image after degradation). On the other hand, DiffPIR gives accurate reconstructions both
in terms of image quality but also closeness to the ground truth.

On Figures 11 and 12, it is interesting to see that ΠGDM seems to struggle to reconstruct regions
that are already a bit blurred such as the man’s beard or the the blurred effect on the background. One
can see that it creates a kind of texture with small dots. This phenomenon doesn’t occur with DPS or
DiffPIR.

Another interesting difference between the methods concerns DPS as one can see on Figures 13, 14.
Indeed, DPS doesn’t reconstruct some details of the image like the tiles on the wall or the written digits
on the adhesive tape. More generally, it seems that DPS struggles with thin details, which is sometimes
more visible when looking at the background or the hair.

At last, Figures 15, 16, showcases the variability of the different methods. One can see that ΠGDM
sometimes produces artefacts like discussed before which makes the method rather unstable. DPS and
DiffPIR produce accurate results for all generations. However, DPS exhibits more variability at each
generation whereas DiffPIR is more stable and stays close to the original ground truth for all generations.

Inpainting results From Figures 17 to 24, we present some results for the inpainting task mostly
for box masks. Indeed, the performance obtained for random masks was rather uniform across all images
so we only included a single figure (Figure 24) as an example.

Figures 17, 18 are appropriate examples of what we observed concerning the inpainting task for box
masks. First of all, it is obvious that ΠGDM suffers catastrophic reconstructions either forcing a hair-like
texture in the reconstruction or an unadapted color mix. This explains the very poor PSNR observed for
the inpainting task in Table 1.

On the other hand, DPS and DiffPIR give reasonable reconstructions. It is however visible that
DiffPIR is more accurate with respect to the ground truth image. In general, the datafit RMSE is way
lower for DiffPIR on this box inpainting task than it is for DPS as it is shown on Figure 8. This indicates
that DiffPIR is more bounded to the unmasked regions of the image which logically seems to guide the
reconstruction of the mask area to better fit the original ground truth. Interestingly, Figure 20 gives
an example where DPS ”adds” glasses to th reconstructed image whereas Figure 20 shows an example
where DiffPIR ”removes” glasses from the reconstruction. This phenomenon was observed multiple times
across our benchmark though it is hard to analyse it from the algorithmic point of view.

Figure 24 gives an example of random mask inpainting. For this specific task, ΠGDM give results
a little bit more accurate than DPS both in terms of PSNR and datafit RMSE. DiffPIR almost always
give the best result of the three methods for this task as one can see it is able to reconstruct thin details
and color variations.
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At last, we noticed that DiffPIR produces noisy images everywhere but at the mask position. This
might indicate a flaw in the implementation of the method. Unfortunately, we failed to localize and fix
this issue in due time.

Figures 23, 24 compare the variability of the three methods for the box mask inpainting task. One
can see that ΠGDM always fail quite dramatically. DiffPIR also seems less stable that DPS when it comes
to reconstruct hair regions. However, DPS doesn’t always respect the expected approximate symmetry
of human faces.

4.3 Synthesis of the results

From the metrics and the qualitative analysis, we were able to extract the main tendencies from the
comparison of DPS, ΠGDM and DiffPIR:

� ΠGDM seems unstable both in deblurring and box inpainting tasks. It sometimes produces high
quality results but can contain artefacts because of the presence of a specific texture in the ground
truth image.

� DPS often produces good quality outputs but smoothes out small details. The restoration can also
be quite different from the ground truth image as the method exhibits a non negligible variability
in its results for a same input image.

� DiffPIR appears to be stable and with low variability. It is most of the time the best result both in
terms of metrics but also qualitatively compared to DPS and ΠGDM.

5. Conclusion

The goal of this project was to study different guided diffusion models for restoration tasks. We chose
the tasks of debluring with various blur kernels like Gaussian blur and motion as well as inpainting with
box or random masks applied to a subset of the FFHQ dataset. We built a reusable python framework
called delires which implements the following restoration methods: DPS, ΠGDM and DiffPIR. We ran
experiments using a pretrained diffusion network in order to evaluate and compare the three methods
both quantitatively using PSNR, RMSE, FID and standard deviation, but also qualitatively with human
evaluation of the results.

Overall, we observed that DPS performs reasonably well in all tasks but exhibits a high variability
across its generations which can differ from the ground truth data by smoothing details to a certain
extent. ΠGDM produces restoration closer to the ground truth compared to DPS but often suffers from
important artefacts on the deblurring tasks and dramatic failure cases on the box inpainting task. On
the other hand, DiffPIR provides the best results both in terms of data fidelity and stability across all
different tasks.
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Appendix

Figure 1: Test set from FFHQ (images 69000-69099)

Figure 2: Set of blur kernels for batch 1
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Figure 3: Test set from FFHQ (images 69100-69199)

Figure 4: Set of blur kernels for batch 2
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Figure 5: Histogram of PSNR values over 100 images for the debluring task of batch 1

12



Benchmarking Guided Diffusion Models

Figure 6: Histogram of datafit RMSE values over 100 images for the debluring task of batch 1
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Figure 7: Histogram of PSNR values over 100 images for the inpainting task of batch 1
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Figure 8: Histogram of datafit RMSE values over 100 images for the inpainting task of batch 1
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Figure 9: Example of image deblurring (FFHQ:69010)

Figure 10: Example of image deblurring (FFHQ:69094)
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Figure 11: Example of image deblurring (FFHQ:69025)

Figure 12: Example of image deblurring (FFHQ:69042)
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Figure 13: Example of image deblurring (FFHQ:69060)

Figure 14: Example of image deblurring (FFHQ:69093)
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Figure 15: Example of the variability of each method for deblurring (FFHQ:69003)

Figure 16: Example of the variability of each method for deblurring (FFHQ:69004)
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Figure 17: Example of image inpainting (FFHQ:69019)

Figure 18: Example of image inpainting (FFHQ:69046)
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Figure 19: Example of image inpainting (FFHQ:69037)

Figure 20: Example of image inpainting (FFHQ:69071)
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Figure 21: Example of image inpainting (FFHQ:69072)

Figure 22: Example of image inpainting (FFHQ:69193)
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Figure 23: Example of the variability of each method for inpainting (FFHQ:69001)

Figure 24: Example of the variability of each method for inpainting (FFHQ:69008)
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