--- license: mit widget: - text: "привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]супер, вот только проснулся, у тебя как?" example_title: "Dialog example 1" - src: "привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм" example_title: "Dialog example 2" - src: "привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?" example_title: "Dialog example 3" --- This classification model is based on [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2). The model should be used to produce relevance and specificity of the last message in the context of a dialog. It is pretrained on corpus of dialog data from social networks and finetuned on [tinkoff-ai/context_similarity](https://huggingface.co/tinkoff-ai/context_similarity). The performance of the model on validation split [tinkoff-ai/context_similarity](https://huggingface.co/tinkoff-ai/context_similarity) (with the best thresholds for validation samples): | | f0.5 | ROC AUC | |:------------|-------:|----------:| | relevance | 0.82 | 0.74 | | specificity | 0.81 | 0.8 | The model can be loaded as follows: ```python # pip install transformers from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("tinkoff-ai/context_similarity") model = AutoModel.from_pretrained("tinkoff-ai/context_similarity") # model.cuda() ```