--- language: - zh license: apache-2.0 tags: - bert - NLU - NLI inference: true widget: - text: "今天心情不好[SEP]今天很开心" --- # Erlangshen-Roberta-110M-Similarity, model (Chinese),one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). We collect 20 paraphrace datasets in the Chinese domain for finetune, with a total of 2773880 samples. Our model is mainly based on [roberta](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) ## Usage ```python from transformers import BertForSequenceClassification from transformers import BertTokenizer import torch tokenizer=BertTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-110M-Similarity') model=BertForSequenceClassification.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-110M-Similarity') texta='今天的饭不好吃' textb='今天心情不好' output=model(torch.tensor([tokenizer.encode(texta,textb)])) print(torch.nn.functional.softmax(output.logits,dim=-1)) ``` ## Scores on downstream chinese tasks(The dev datasets of BUSTM and AFQMC may exist in the train set) | Model | BQ | BUSTM | AFQMC | | :--------: | :-----: | :----: | :-----: | | Erlangshen-Roberta-110M-Similarity | 85.41 | 95.18 | 81.72 | | Erlangshen-Roberta-330M-Similarity | 86.21 | 99.29 | 93.89 | | Erlangshen-MegatronBert-1.3B-Similarity | 86.31 | - | - | ## Citation If you find the resource is useful, please cite the following website in your paper. ``` @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```