--- library_name: transformers language: - pa license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: Punjabi Whisper large-v3 - Swayangjit results: [] --- # Punjabi Whisper large-v3 - Swayangjit This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3908 - Wer: 71.4286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.4502 | 0.0133 | 10 | 0.6460 | 91.9414 | | 0.7124 | 0.0266 | 20 | 0.4013 | 72.8205 | | 0.6185 | 0.0399 | 30 | 0.4096 | 79.7436 | | 0.5898 | 0.0533 | 40 | 0.4439 | 124.3590 | | 0.5579 | 0.0666 | 50 | 0.3908 | 71.4286 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0