--- license: llama3 language: - it base_model: - meta-llama/Meta-Llama-3-8B - openai/clip-vit-large-patch14-336 pipeline_tag: text-generation --- # Model Card for LLaVA-NDiNO_pt_short_long ## Model description **LLaVA-NDiNO** is a family of *Large Vision Language Models (LVLMs)* that have been trained for the Italian language. The model was trained by instruction-tuning [LLaVA-NDiNO_pt_short](https://huggingface.co/swap-uniba/LLaVA-NDiNO_pt_short) on an Italian machine-translated version of [LLaVA Conversation 58k](https://huggingface.co/datasets/jxu124/llava_conversation_58k). If you are interested in more details regarding the training procedure, you can find the code we used at the following link: - **Repository:** https://github.com/swapUniba/LLaVA-NDiNO - **Developed by:** Elio Musacchio, Lucia Siciliani, Pierpaolo Basile, Giovanni Semeraro - **Funded by:** PNRR project FAIR - Future AI Research - **Compute infrastructure:** [Leonardo](https://www.hpc.cineca.it/systems/hardware/leonardo/) supercomputer - **Model type:** LLaMA 3 + CLIP - **Language(s) (NLP):** Italian - **License:** Llama 3 Community License - **Finetuned from model:** [swap-uniba/LLaVA-NDiNO_pt_short](https://huggingface.co/swap-uniba/LLaVA-NDiNO_pt_short) ## Example Usage ```python import torch import requests from PIL import Image from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, set_seed model_name = "swap-uniba/LLaVA-NDiNO_pt_short_long" processor = LlavaNextProcessor.from_pretrained(model_name) model = LlavaNextForConditionalGeneration.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto") url = "https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg" image = Image.open(requests.get(url, stream=True).raw) chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}" conversation = [ { "role": "user", "content": "\nCosa c'รจ di strano in questa immagine?" }, ] prompt = processor.apply_chat_template(conversation, chat_template, add_generation_prompt=True) inputs = processor(prompt, image, return_tensors="pt") set_seed(42) output = model.generate(**inputs, max_new_tokens=4096) print(processor.decode(output[0][inputs.input_ids.shape[1]:])) ``` ## Citation ``` @inproceedings{musacchioLLaVANDiNO, title={LLaVA-NDiNO: Empowering LLMs with Multimodality for the Italian Language}, author={Musacchio, Elio and Siciliani, Lucia and Basile, Pierpaolo and Semeraro, Giovanni}, booktitle={Proceedings of the Eighth Workshop on Natural Language for Artificial Intelligence (NL4AI 2024) co-located with 23th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2024)}, year={2024} } ```