--- license: llama2 language: - it tags: - text-generation-inference --- llamantino53 # Model Card for LLaMAntino-2-70b-hf-UltraChat-ITA *Last Update: 02/02/2024*
*Example of Use*: [Colab Notebook](https://colab.research.google.com/drive/1xUite70ANLQp8NwQE93jlI3epj_cpua7?usp=sharing)
## Model description **LLaMAntino-2-70b-hf-UltraChat-ITA** is a *Large Language Model (LLM)* that is an instruction-tuned version of **LLaMAntino-2-70b** (an italian-adapted **LLaMA 2 chat**). This model aims to provide Italian NLP researchers with an improved model for italian dialogue use cases. The model was trained using *QLora* and using as training data [UltraChat](https://github.com/thunlp/ultrachat) translated to the italian language using [Argos Translate](https://pypi.org/project/argostranslate/1.4.0/). If you are interested in more details regarding the training procedure, you can find the code we used at the following link: - **Repository:** https://github.com/swapUniba/LLaMAntino **NOTICE**: the code has not been released yet, we apologize for the delay, it will be available asap! - **Developed by:** Pierpaolo Basile, Elio Musacchio, Marco Polignano, Lucia Siciliani, Giuseppe Fiameni, Giovanni Semeraro - **Funded by:** PNRR project FAIR - Future AI Research - **Compute infrastructure:** [Leonardo](https://www.hpc.cineca.it/systems/hardware/leonardo/) supercomputer - **Model type:** LLaMA-2 - **Language(s) (NLP):** Italian - **License:** Llama 2 Community License - **Finetuned from model:** [swap-uniba/meta-llama/Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf) ## Prompt Format This prompt format based on the [LLaMA 2 prompt template](https://gpus.llm-utils.org/llama-2-prompt-template/) adapted to the italian language was used: ```python " [INST]<>\n" \ "Sei un assistente disponibile, rispettoso e onesto di nome Llamantino. " \ "Rispondi sempre nel modo più utile possibile, pur essendo sicuro. " \ "Le risposte non devono includere contenuti dannosi, non etici, razzisti, sessisti, tossici, pericolosi o illegali. " \ "Assicurati che le tue risposte siano socialmente imparziali e positive. " \ "Se una domanda non ha senso o non è coerente con i fatti, spiegane il motivo invece di rispondere in modo non corretto. " \ "Se non conosci la risposta a una domanda, non condividere informazioni false.\n" \ "<>\n\n" \ f"{user_msg_1} [/INST] {model_answer_1} [INST] {user_msg_2}[/INST] {model_answer_2} ... [INST] {user_msg_N} [/INST] {model_answer_N} " ``` We recommend using the same prompt in inference to obtain the best results! ## How to Get Started with the Model Below you can find an example of model usage: ```python from transformers import AutoTokenizer import transformers import torch import os os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" model = "swap-uniba/LLaMAntino-2-70b-hf-UltraChat-ITA" tokenizer = AutoTokenizer.from_pretrained(model) tokenizer.add_special_tokens({"pad_token":""}) tokenizer.chat_template = "{% set ns = namespace(i=0) %}" \ "{% for message in messages %}" \ "{% if message['role'] == 'user' and ns.i == 0 %}" \ "{{ bos_token +' [INST] <>\n' }}" \ "{{ 'Sei un assistente disponibile, rispettoso e onesto di nome Llamantino. ' }}" \ "{{ 'Rispondi sempre nel modo più utile possibile, pur essendo sicuro. ' }}" \ "{{ 'Le risposte non devono includere contenuti dannosi, non etici, razzisti, sessisti, tossici, pericolosi o illegali. ' }}" \ "{{ 'Assicurati che le tue risposte siano socialmente imparziali e positive. ' }}" \ "{{ 'Se una domanda non ha senso o non è coerente con i fatti, spiegane il motivo invece di rispondere in modo non corretto. ' }}" \ "{{ 'Se non conosci la risposta a una domanda, non condividere informazioni false.\n' }}" \ "{{ '<>\n\n' }}" \ "{{ message['content'] + ' [/INST]' }}" \ "{% elif message['role'] == 'user' and ns.i != 0 %} " \ "{{ bos_token + ' [INST] ' + message['content'] + ' [/INST]' }}" \ "{% elif message['role'] == 'assistant' %}" \ "{{ ' ' + message['content'] + ' ' + eos_token + ' ' }}" \ "{% endif %}" \ "{% set ns.i = ns.i+1 %}" \ "{% endfor %}" pipe = transformers.pipeline(model=model, device_map="balanced", tokenizer=tokenizer, return_full_text=False, # langchain expects the full text task='text-generation', max_new_tokens=512, # max number of tokens to generate in the output temperature=0.8 #temperature ) messages = [{"role": "user", "content": "Cosa sono i word embeddings?"}] text = tokenizer.apply_chat_template(messages, tokenize=False) sequences = pipe(text) for seq in sequences: print(f"{seq['generated_text']}") ``` If you are facing issues when loading the model, you can try to load it **Quantized**: ```python model = AutoModelForCausalLM.from_pretrained(model_id, load_in_8bit=True) ``` *Note*: 1) The model loading strategy above requires the [*bitsandbytes*](https://pypi.org/project/bitsandbytes/) and [*accelerate*](https://pypi.org/project/accelerate/) libraries 2) The Tokenizer, by default, adds at the beginning of the prompt the '\' token. If that is not the case, add as a starting token the *\* string. ## Evaluation *Coming soon*! ## Citation If you use this model in your research, please cite the following: ```bibtex @misc{basile2023llamantino, title={LLaMAntino: LLaMA 2 Models for Effective Text Generation in Italian Language}, author={Pierpaolo Basile and Elio Musacchio and Marco Polignano and Lucia Siciliani and Giuseppe Fiameni and Giovanni Semeraro}, year={2023}, eprint={2312.09993}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` *Notice:* Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved. [*License*](https://ai.meta.com/llama/license/)