import pytest from pytest import raises from ggml import lib, ffi from ggml.utils import init, copy, numpy import numpy as np import numpy.testing as npt @pytest.fixture() def ctx(): print("setup") yield init(mem_size=10*1024*1024) print("teardown") class TestNumPy: # Single element def test_set_get_single_i32(self, ctx): i = lib.ggml_new_i32(ctx, 42) assert lib.ggml_get_i32_1d(i, 0) == 42 assert numpy(i) == np.array([42], dtype=np.int32) def test_set_get_single_f32(self, ctx): i = lib.ggml_new_f32(ctx, 4.2) epsilon = 0.000001 # Not sure why so large a difference?? pytest.approx(lib.ggml_get_f32_1d(i, 0), 4.2, epsilon) pytest.approx(numpy(i), np.array([4.2], dtype=np.float32), epsilon) def _test_copy_np_to_ggml(self, a: np.ndarray, t: ffi.CData): a2 = a.copy() # Clone original copy(a, t) npt.assert_array_equal(numpy(t), a2) # I32 def test_copy_np_to_ggml_1d_i32(self, ctx): t = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_I32, 10) a = np.arange(10, dtype=np.int32) self._test_copy_np_to_ggml(a, t) def test_copy_np_to_ggml_2d_i32(self, ctx): t = lib.ggml_new_tensor_2d(ctx, lib.GGML_TYPE_I32, 2, 3) a = np.arange(2 * 3, dtype=np.int32).reshape((2, 3)) self._test_copy_np_to_ggml(a, t) def test_copy_np_to_ggml_3d_i32(self, ctx): t = lib.ggml_new_tensor_3d(ctx, lib.GGML_TYPE_I32, 2, 3, 4) a = np.arange(2 * 3 * 4, dtype=np.int32).reshape((2, 3, 4)) self._test_copy_np_to_ggml(a, t) def test_copy_np_to_ggml_4d_i32(self, ctx): t = lib.ggml_new_tensor_4d(ctx, lib.GGML_TYPE_I32, 2, 3, 4, 5) a = np.arange(2 * 3 * 4 * 5, dtype=np.int32).reshape((2, 3, 4, 5)) self._test_copy_np_to_ggml(a, t) def test_copy_np_to_ggml_4d_n_i32(self, ctx): dims = [2, 3, 4, 5] # GGML_MAX_DIMS is 4, going beyond would crash pdims = ffi.new('int64_t[]', len(dims)) for i, d in enumerate(dims): pdims[i] = d t = lib.ggml_new_tensor(ctx, lib.GGML_TYPE_I32, len(dims), pdims) a = np.arange(np.prod(dims), dtype=np.int32).reshape(tuple(pdims)) self._test_copy_np_to_ggml(a, t) # F32 def test_copy_np_to_ggml_1d_f32(self, ctx): t = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_F32, 10) a = np.arange(10, dtype=np.float32) self._test_copy_np_to_ggml(a, t) def test_copy_np_to_ggml_2d_f32(self, ctx): t = lib.ggml_new_tensor_2d(ctx, lib.GGML_TYPE_F32, 2, 3) a = np.arange(2 * 3, dtype=np.float32).reshape((2, 3)) self._test_copy_np_to_ggml(a, t) def test_copy_np_to_ggml_3d_f32(self, ctx): t = lib.ggml_new_tensor_3d(ctx, lib.GGML_TYPE_F32, 2, 3, 4) a = np.arange(2 * 3 * 4, dtype=np.float32).reshape((2, 3, 4)) self._test_copy_np_to_ggml(a, t) def test_copy_np_to_ggml_4d_f32(self, ctx): t = lib.ggml_new_tensor_4d(ctx, lib.GGML_TYPE_F32, 2, 3, 4, 5) a = np.arange(2 * 3 * 4 * 5, dtype=np.float32).reshape((2, 3, 4, 5)) self._test_copy_np_to_ggml(a, t) def test_copy_np_to_ggml_4d_n_f32(self, ctx): dims = [2, 3, 4, 5] # GGML_MAX_DIMS is 4, going beyond would crash pdims = ffi.new('int64_t[]', len(dims)) for i, d in enumerate(dims): pdims[i] = d t = lib.ggml_new_tensor(ctx, lib.GGML_TYPE_F32, len(dims), pdims) a = np.arange(np.prod(dims), dtype=np.float32).reshape(tuple(pdims)) self._test_copy_np_to_ggml(a, t) # F16 def test_copy_np_to_ggml_1d_f16(self, ctx): t = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_F16, 10) a = np.arange(10, dtype=np.float16) self._test_copy_np_to_ggml(a, t) def test_copy_np_to_ggml_2d_f16(self, ctx): t = lib.ggml_new_tensor_2d(ctx, lib.GGML_TYPE_F16, 2, 3) a = np.arange(2 * 3, dtype=np.float16).reshape((2, 3)) self._test_copy_np_to_ggml(a, t) def test_copy_np_to_ggml_3d_f16(self, ctx): t = lib.ggml_new_tensor_3d(ctx, lib.GGML_TYPE_F16, 2, 3, 4) a = np.arange(2 * 3 * 4, dtype=np.float16).reshape((2, 3, 4)) self._test_copy_np_to_ggml(a, t) def test_copy_np_to_ggml_4d_f16(self, ctx): t = lib.ggml_new_tensor_4d(ctx, lib.GGML_TYPE_F16, 2, 3, 4, 5) a = np.arange(2 * 3 * 4 * 5, dtype=np.float16).reshape((2, 3, 4, 5)) self._test_copy_np_to_ggml(a, t) def test_copy_np_to_ggml_4d_n_f16(self, ctx): dims = [2, 3, 4, 5] # GGML_MAX_DIMS is 4, going beyond would crash pdims = ffi.new('int64_t[]', len(dims)) for i, d in enumerate(dims): pdims[i] = d t = lib.ggml_new_tensor(ctx, lib.GGML_TYPE_F16, len(dims), pdims) a = np.arange(np.prod(dims), dtype=np.float16).reshape(tuple(pdims)) self._test_copy_np_to_ggml(a, t) # Mismatching shapes def test_copy_mismatching_shapes_1d(self, ctx): t = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_F32, 10) a = np.arange(10, dtype=np.float32) copy(a, t) # OK a = a.reshape((5, 2)) with raises(AssertionError): copy(a, t) with raises(AssertionError): copy(t, a) def test_copy_mismatching_shapes_2d(self, ctx): t = lib.ggml_new_tensor_2d(ctx, lib.GGML_TYPE_F32, 2, 3) a = np.arange(6, dtype=np.float32) copy(a.reshape((2, 3)), t) # OK a = a.reshape((3, 2)) with raises(AssertionError): copy(a, t) with raises(AssertionError): copy(t, a) def test_copy_mismatching_shapes_3d(self, ctx): t = lib.ggml_new_tensor_3d(ctx, lib.GGML_TYPE_F32, 2, 3, 4) a = np.arange(24, dtype=np.float32) copy(a.reshape((2, 3, 4)), t) # OK a = a.reshape((2, 4, 3)) with raises(AssertionError): copy(a, t) with raises(AssertionError): copy(t, a) def test_copy_mismatching_shapes_4d(self, ctx): t = lib.ggml_new_tensor_4d(ctx, lib.GGML_TYPE_F32, 2, 3, 4, 5) a = np.arange(24*5, dtype=np.float32) copy(a.reshape((2, 3, 4, 5)), t) # OK a = a.reshape((2, 3, 5, 4)) with raises(AssertionError): copy(a, t) with raises(AssertionError): copy(t, a) def test_copy_f16_to_f32(self, ctx): t = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_F32, 1) a = np.array([123.45], dtype=np.float16) copy(a, t) np.testing.assert_allclose(lib.ggml_get_f32_1d(t, 0), 123.45, rtol=1e-3) def test_copy_f32_to_f16(self, ctx): t = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_F16, 1) a = np.array([123.45], dtype=np.float32) copy(a, t) np.testing.assert_allclose(lib.ggml_get_f32_1d(t, 0), 123.45, rtol=1e-3) def test_copy_f16_to_Q5_K(self, ctx): n = 256 t = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_Q5_K, n) a = np.arange(n, dtype=np.float16) copy(a, t) np.testing.assert_allclose(a, numpy(t, allow_copy=True), rtol=0.05) def test_copy_Q5_K_to_f16(self, ctx): n = 256 t = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_Q5_K, n) copy(np.arange(n, dtype=np.float32), t) a = np.arange(n, dtype=np.float16) copy(t, a) np.testing.assert_allclose(a, numpy(t, allow_copy=True), rtol=0.05) def test_copy_i16_f32_mismatching_types(self, ctx): t = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_F32, 1) a = np.arange(1, dtype=np.int16) with raises(NotImplementedError): copy(a, t) with raises(NotImplementedError): copy(t, a) class TestTensorCopy: def test_copy_self(self, ctx): t = lib.ggml_new_i32(ctx, 42) copy(t, t) assert lib.ggml_get_i32_1d(t, 0) == 42 def test_copy_1d(self, ctx): t1 = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_F32, 10) t2 = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_F32, 10) a = np.arange(10, dtype=np.float32) copy(a, t1) copy(t1, t2) assert np.allclose(a, numpy(t2)) assert np.allclose(numpy(t1), numpy(t2)) class TestGraph: def test_add(self, ctx): n = 256 ta = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_F32, n) tb = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_F32, n) tsum = lib.ggml_add(ctx, ta, tb) assert tsum.type == lib.GGML_TYPE_F32 gf = ffi.new('struct ggml_cgraph*') lib.ggml_build_forward_expand(gf, tsum) a = np.arange(0, n, dtype=np.float32) b = np.arange(n, 0, -1, dtype=np.float32) copy(a, ta) copy(b, tb) lib.ggml_graph_compute_with_ctx(ctx, gf, 1) assert np.allclose(numpy(tsum, allow_copy=True), a + b) class TestQuantization: def test_quantized_add(self, ctx): n = 256 ta = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_Q5_K, n) tb = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_F32, n) tsum = lib.ggml_add(ctx, ta, tb) assert tsum.type == lib.GGML_TYPE_Q5_K gf = ffi.new('struct ggml_cgraph*') lib.ggml_build_forward_expand(gf, tsum) a = np.arange(0, n, dtype=np.float32) b = np.arange(n, 0, -1, dtype=np.float32) copy(a, ta) copy(b, tb) lib.ggml_graph_compute_with_ctx(ctx, gf, 1) unquantized_sum = a + b sum = numpy(tsum, allow_copy=True) diff = np.linalg.norm(unquantized_sum - sum, np.inf) assert diff > 4 assert diff < 5