from ggml import lib, ffi from ggml.utils import init, copy, numpy import numpy as np ctx = init(mem_size=12*1024*1024) # automatically freed when pointer is GC'd n = 256 n_threads = 4 a = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_Q5_K, n) b = lib.ggml_new_tensor_1d(ctx, lib.GGML_TYPE_F32, n) # can't both be quantized sum = lib.ggml_add(ctx, a, b) # all zeroes for now. Will be quantized too! # See cffi's doc on how to allocate native memory: it's very simple! # https://cffi.readthedocs.io/en/latest/ref.html#ffi-interface gf = ffi.new('struct ggml_cgraph*') lib.ggml_build_forward_expand(gf, sum) copy(np.array([i for i in range(n)], np.float32), a) copy(np.array([i*100 for i in range(n)], np.float32), b) lib.ggml_graph_compute_with_ctx(ctx, gf, n_threads) print(numpy(a, allow_copy=True)) print(numpy(b)) print(numpy(sum, allow_copy=True))