File size: 15,726 Bytes
9fcf2b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import struct
import json
import os

import numpy as np
import torch
import safetensors.torch

this_file_dir = os.path.dirname(__file__)
vocab_dir = this_file_dir

SD1 = 0
SD2 = 1

ggml_ftype_str_to_int = {
    "f32": 0,
    "f16": 1,
    "q4_0": 2,
    "q4_1": 3,
    "q5_0": 8,
    "q5_1": 9,
    "q8_0": 7
}

ggml_ttype_str_to_int = {
    "f32": 0,
    "f16": 1,
    "q4_0": 2,
    "q4_1": 3,
    "q5_0": 6,
    "q5_1": 7,
    "q8_0": 8
}

QK4_0 = 32
def quantize_q4_0(x):
    assert x.shape[-1] % QK4_0 == 0 and x.shape[-1] > QK4_0
    x = x.reshape(-1, QK4_0)
    max = np.take_along_axis(x, np.argmax(np.abs(x), axis=-1)[:, np.newaxis], axis=-1)
    d = max / -8
    qs = ((x / d) + 8).round().clip(min=0, max=15).astype(np.int8)
    half = QK4_0 // 2
    qs = qs[:, :half] | (qs[:, half:] << 4)
    d = d.astype(np.float16).view(np.int8)
    y = np.concatenate((d, qs), axis=-1)
    return y

QK4_1 = 32
def quantize_q4_1(x):
    assert x.shape[-1] % QK4_1 == 0 and x.shape[-1] > QK4_1
    x = x.reshape(-1, QK4_1)
    min = np.min(x, axis=-1, keepdims=True)
    max = np.max(x, axis=-1, keepdims=True)
    d = (max - min) / ((1 << 4) - 1)
    qs = ((x - min) / d).round().clip(min=0, max=15).astype(np.int8)
    half = QK4_1 // 2
    qs = qs[:, :half] | (qs[:, half:] << 4)
    d = d.astype(np.float16).view(np.int8)
    m = min.astype(np.float16).view(np.int8)
    y = np.concatenate((d, m, qs), axis=-1)
    return y

QK5_0 = 32
def quantize_q5_0(x):
    assert x.shape[-1] % QK5_0 == 0 and x.shape[-1] > QK5_0
    x = x.reshape(-1, QK5_0)
    max = np.take_along_axis(x, np.argmax(np.abs(x), axis=-1)[:, np.newaxis], axis=-1)
    d = max / -16
    xi = ((x / d) + 16).round().clip(min=0, max=31).astype(np.int8)
    half = QK5_0 // 2
    qs = (xi[:, :half] & 0x0F) | (xi[:, half:] << 4)
    qh = np.zeros(qs.shape[:-1], dtype=np.int32)
    for i in range(QK5_0):
        qh |= ((xi[:, i] & 0x10) >> 4).astype(np.int32) << i
    d = d.astype(np.float16).view(np.int8)
    qh = qh[..., np.newaxis].view(np.int8)
    y = np.concatenate((d, qh, qs), axis=-1)
    return y

QK5_1 = 32
def quantize_q5_1(x):
    assert x.shape[-1] % QK5_1 == 0 and x.shape[-1] > QK5_1
    x = x.reshape(-1, QK5_1)
    min = np.min(x, axis=-1, keepdims=True)
    max = np.max(x, axis=-1, keepdims=True)
    d = (max - min) / ((1 << 5) - 1)
    xi = ((x - min) / d).round().clip(min=0, max=31).astype(np.int8)
    half = QK5_1//2
    qs = (xi[:, :half] & 0x0F) | (xi[:, half:] << 4)
    qh = np.zeros(xi.shape[:-1], dtype=np.int32)
    for i in range(QK5_1):
        qh |= ((xi[:, i] & 0x10) >> 4).astype(np.int32) << i
    d = d.astype(np.float16).view(np.int8)
    m = min.astype(np.float16).view(np.int8)
    qh = qh[..., np.newaxis].view(np.int8)
    ndarray = np.concatenate((d, m, qh, qs), axis=-1)
    return ndarray

QK8_0 = 32
def quantize_q8_0(x):
    assert x.shape[-1] % QK8_0 == 0 and x.shape[-1] > QK8_0
    x = x.reshape(-1, QK8_0)
    amax = np.max(np.abs(x), axis=-1, keepdims=True) 
    d = amax / ((1 << 7) - 1)
    qs = (x / d).round().clip(min=-128, max=127).astype(np.int8)
    d = d.astype(np.float16).view(np.int8)
    y = np.concatenate((d, qs), axis=-1)
    return y

# copy from https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py#L16
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a significant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8+n)
            n += 1
    cs = [chr(n) for n in cs]
    return dict(zip(bs, cs))

def load_model_from_file(model_path):
    print("loading model from {}".format(model_path))
    if model_path.lower().endswith(".safetensors"):
        pl_sd = safetensors.torch.load_file(model_path, device="cpu")
    else:
        pl_sd = torch.load(model_path, map_location="cpu")
    state_dict = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd
    print("loading model from {} completed".format(model_path))
    return state_dict

def get_alpha_comprod(linear_start=0.00085, linear_end=0.0120, timesteps=1000):
    betas = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, timesteps, dtype=torch.float32) ** 2
    alphas = 1. - betas
    alphas_cumprod = np.cumprod(alphas.numpy(), axis=0)
    return torch.tensor(alphas_cumprod)

unused_tensors = [
    "betas",
    "alphas_cumprod_prev",
    "sqrt_alphas_cumprod",
    "sqrt_one_minus_alphas_cumprod",
    "log_one_minus_alphas_cumprod",
    "sqrt_recip_alphas_cumprod",
    "sqrt_recipm1_alphas_cumprod",
    "posterior_variance",
    "posterior_log_variance_clipped",
    "posterior_mean_coef1",
    "posterior_mean_coef2",
    "cond_stage_model.transformer.text_model.embeddings.position_ids",
    "cond_stage_model.model.logit_scale",
    "cond_stage_model.model.text_projection",
    "model_ema.decay",
    "model_ema.num_updates",
    "control_model",
    "lora_te_text_model",
    "embedding_manager"
]


def preprocess(state_dict):
    alphas_cumprod = state_dict.get("alphas_cumprod")
    if alphas_cumprod != None:
        # print((np.abs(get_alpha_comprod().numpy() - alphas_cumprod.numpy()) < 0.000001).all())
        pass
    else:
        print("no alphas_cumprod in file, generate new one")
        alphas_cumprod = get_alpha_comprod()
        state_dict["alphas_cumprod"] = alphas_cumprod
    
    new_state_dict = {}
    for name, w in state_dict.items():
        # ignore unused tensors
        if not isinstance(w, torch.Tensor):
            continue
        skip = False
        for unused_tensor in unused_tensors:
            if name.startswith(unused_tensor):
                skip = True
                break
        if skip:
            continue

        # # convert BF16 to FP16
        if w.dtype == torch.bfloat16:
            w = w.to(torch.float16)

        # convert open_clip to hf CLIPTextModel (for SD2.x)
        open_clip_to_hf_clip_model = {
            "cond_stage_model.model.ln_final.bias": "cond_stage_model.transformer.text_model.final_layer_norm.bias",
            "cond_stage_model.model.ln_final.weight": "cond_stage_model.transformer.text_model.final_layer_norm.weight",
            "cond_stage_model.model.positional_embedding": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
            "cond_stage_model.model.token_embedding.weight": "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight",
            "first_stage_model.decoder.mid.attn_1.to_k.bias": "first_stage_model.decoder.mid.attn_1.k.bias",
            "first_stage_model.decoder.mid.attn_1.to_k.weight": "first_stage_model.decoder.mid.attn_1.k.weight",
            "first_stage_model.decoder.mid.attn_1.to_out.0.bias": "first_stage_model.decoder.mid.attn_1.proj_out.bias",
            "first_stage_model.decoder.mid.attn_1.to_out.0.weight": "first_stage_model.decoder.mid.attn_1.proj_out.weight",
            "first_stage_model.decoder.mid.attn_1.to_q.bias": "first_stage_model.decoder.mid.attn_1.q.bias",
            "first_stage_model.decoder.mid.attn_1.to_q.weight": "first_stage_model.decoder.mid.attn_1.q.weight",
            "first_stage_model.decoder.mid.attn_1.to_v.bias": "first_stage_model.decoder.mid.attn_1.v.bias",
            "first_stage_model.decoder.mid.attn_1.to_v.weight": "first_stage_model.decoder.mid.attn_1.v.weight",
        }
        open_clip_to_hk_clip_resblock = {
            "attn.out_proj.bias": "self_attn.out_proj.bias",
            "attn.out_proj.weight": "self_attn.out_proj.weight",
            "ln_1.bias": "layer_norm1.bias",
            "ln_1.weight": "layer_norm1.weight",
            "ln_2.bias": "layer_norm2.bias",
            "ln_2.weight": "layer_norm2.weight",
            "mlp.c_fc.bias": "mlp.fc1.bias",
            "mlp.c_fc.weight": "mlp.fc1.weight",
            "mlp.c_proj.bias": "mlp.fc2.bias",
            "mlp.c_proj.weight": "mlp.fc2.weight",
        }
        open_clip_resblock_prefix = "cond_stage_model.model.transformer.resblocks."
        hf_clip_resblock_prefix = "cond_stage_model.transformer.text_model.encoder.layers."
        if name in open_clip_to_hf_clip_model:
            new_name = open_clip_to_hf_clip_model[name]
            print(f"preprocess {name} => {new_name}")
            name = new_name
        if name.startswith(open_clip_resblock_prefix):
            remain = name[len(open_clip_resblock_prefix):]
            idx = remain.split(".")[0]
            suffix = remain[len(idx)+1:]
            if suffix == "attn.in_proj_weight":
                w_q, w_k, w_v = w.chunk(3)
                for new_suffix, new_w in zip(["self_attn.q_proj.weight", "self_attn.k_proj.weight", "self_attn.v_proj.weight"], [w_q, w_k, w_v]):
                    new_name = hf_clip_resblock_prefix + idx + "." + new_suffix
                    new_state_dict[new_name] = new_w
                    print(f"preprocess {name}{w.size()} => {new_name}{new_w.size()}")
            elif suffix == "attn.in_proj_bias":
                w_q, w_k, w_v = w.chunk(3)
                for new_suffix, new_w in zip(["self_attn.q_proj.bias", "self_attn.k_proj.bias", "self_attn.v_proj.bias"], [w_q, w_k, w_v]):
                    new_name = hf_clip_resblock_prefix + idx + "." + new_suffix
                    new_state_dict[new_name] = new_w
                    print(f"preprocess {name}{w.size()} => {new_name}{new_w.size()}")
            else:
                new_suffix = open_clip_to_hk_clip_resblock[suffix]
                new_name = hf_clip_resblock_prefix + idx + "." + new_suffix
                new_state_dict[new_name] = w
                print(f"preprocess {name} => {new_name}")
            continue
        
        # convert unet transformer linear to conv2d 1x1
        if name.startswith("model.diffusion_model.") and (name.endswith("proj_in.weight") or name.endswith("proj_out.weight")):
            if len(w.shape) == 2:
                new_w = w.unsqueeze(2).unsqueeze(3)
                new_state_dict[name] = new_w
                print(f"preprocess {name} {w.size()} => {name} {new_w.size()}")
                continue

        # convert vae attn block linear to conv2d 1x1
        if name.startswith("first_stage_model.") and "attn_1" in name:
            if len(w.shape) == 2:
                new_w = w.unsqueeze(2).unsqueeze(3)
                new_state_dict[name] = new_w
                print(f"preprocess {name} {w.size()} => {name} {new_w.size()}")
                continue

        new_state_dict[name] = w
    return new_state_dict

def convert(model_path, out_type = None, out_file=None):
    # load model
    with open(os.path.join(vocab_dir, "vocab.json"), encoding="utf-8") as f:
        clip_vocab = json.load(f)
    
    state_dict = load_model_from_file(model_path)
    model_type = SD1
    if "cond_stage_model.model.token_embedding.weight" in state_dict.keys():
        model_type = SD2
        print("Stable diffuison 2.x")
    else:
        print("Stable diffuison 1.x")
    state_dict = preprocess(state_dict)

    # output option
    if out_type == None:
        weight = state_dict["model.diffusion_model.input_blocks.0.0.weight"].numpy()
        if weight.dtype == np.float32:
            out_type = "f32"
        elif weight.dtype == np.float16:
            out_type = "f16"
        elif weight.dtype == np.float64:
            out_type = "f32"
        else:
            raise Exception("unsupported weight type %s" % weight.dtype)
    if out_file == None:
        out_file = os.path.splitext(os.path.basename(model_path))[0] + f"-ggml-model-{out_type}.bin"
        out_file = os.path.join(os.getcwd(), out_file)
    print(f"Saving GGML compatible file to {out_file}")

    # convert and save
    with open(out_file, "wb") as file:
        # magic: ggml in hex
        file.write(struct.pack("i", 0x67676D6C))
        # model & file type
        ftype = (model_type << 16) | ggml_ftype_str_to_int[out_type]
        file.write(struct.pack("i", ftype))

        # vocab
        byte_encoder = bytes_to_unicode()
        byte_decoder = {v: k for k, v in byte_encoder.items()}
        file.write(struct.pack("i", len(clip_vocab)))
        for key in clip_vocab:
            text = bytearray([byte_decoder[c] for c in key])
            file.write(struct.pack("i", len(text)))
            file.write(text)
        
        # weights
        for name in state_dict.keys():
            if not isinstance(state_dict[name], torch.Tensor):
                continue
            skip = False
            for unused_tensor in unused_tensors:
                if name.startswith(unused_tensor):
                    skip = True
                    break
            if skip:
                continue
            if name in unused_tensors:
                continue
            data = state_dict[name].numpy()

            n_dims = len(data.shape)
            shape = data.shape
            old_type = data.dtype

            ttype = "f32"
            if n_dims == 4:
                data = data.astype(np.float16)
                ttype = "f16"
            elif n_dims == 2 and name[-7:] == ".weight":
                if out_type == "f32":
                    data = data.astype(np.float32)
                elif out_type == "f16":
                    data = data.astype(np.float16)
                elif out_type == "q4_0":
                    data = quantize_q4_0(data)
                elif out_type == "q4_1":
                    data = quantize_q4_1(data)
                elif out_type == "q5_0":
                    data = quantize_q5_0(data)
                elif out_type == "q5_1":
                    data = quantize_q5_1(data)
                elif out_type == "q8_0":
                    data = quantize_q8_0(data)
                else:
                    raise Exception("invalid out_type {}".format(out_type))
                ttype = out_type
            else:
                data = data.astype(np.float32)
                ttype = "f32"
            
            print("Processing tensor: {} with shape {}, {} -> {}".format(name, data.shape, old_type, ttype))

            # header
            name_bytes = name.encode("utf-8")
            file.write(struct.pack("iii", n_dims, len(name_bytes), ggml_ttype_str_to_int[ttype]))
            for i in range(n_dims):
                file.write(struct.pack("i", shape[n_dims - 1 - i]))
            file.write(name_bytes)
            # data
            data.tofile(file)
        print("Convert done")
        print(f"Saved GGML compatible file to {out_file}")

if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser(description="Convert Stable Diffuison model to GGML compatible file format")
    parser.add_argument("--out_type", choices=["f32", "f16", "q4_0", "q4_1", "q5_0", "q5_1", "q8_0"], help="output format (default: based on input)")
    parser.add_argument("--out_file", help="path to write to; default: based on input and current working directory")
    parser.add_argument("model_path", help="model file path (*.pth, *.pt, *.ckpt, *.safetensors)")
    args = parser.parse_args()
    convert(args.model_path, args.out_type, args.out_file)