#include "ggml/ggml.h" #include "ggml/ggml-alloc.h" #include "ggml/ggml-backend.h" #ifdef GGML_USE_CUBLAS #include "ggml-cuda.h" #endif #ifdef GGML_USE_METAL #include "ggml-metal.h" #endif #include "common.h" #include "common-ggml.h" #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) { (void) level; (void) user_data; fputs(text, stderr); fflush(stderr); } // default hparams (GPT-2 117M) struct gpt2_hparams { int32_t n_vocab = 50257; int32_t n_ctx = 1024; int32_t n_embd = 768; int32_t n_head = 12; int32_t n_layer = 12; int32_t ftype = 1; float eps = 1e-5f; }; struct gpt2_layer { // normalization struct ggml_tensor * ln_1_g; struct ggml_tensor * ln_1_b; struct ggml_tensor * ln_2_g; struct ggml_tensor * ln_2_b; // attention struct ggml_tensor * c_attn_attn_w; struct ggml_tensor * c_attn_attn_b; struct ggml_tensor * c_attn_proj_w; struct ggml_tensor * c_attn_proj_b; // mlp struct ggml_tensor * c_mlp_fc_w; struct ggml_tensor * c_mlp_fc_b; struct ggml_tensor * c_mlp_proj_w; struct ggml_tensor * c_mlp_proj_b; }; struct gpt2_model { gpt2_hparams hparams; // normalization struct ggml_tensor * ln_f_g; struct ggml_tensor * ln_f_b; struct ggml_tensor * wte; // position embedding struct ggml_tensor * wpe; // token embedding struct ggml_tensor * lm_head; // language model head std::vector layers; // key + value memory struct ggml_tensor * memory_k; struct ggml_tensor * memory_v; // struct ggml_context * ctx; ggml_backend_t backend = NULL; ggml_backend_buffer_t buffer_w; ggml_backend_buffer_t buffer_kv; std::map tensors; }; // load the model's weights from a file bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab, int n_ctx, int n_gpu_layers) { printf("%s: loading model from '%s'\n", __func__, fname.c_str()); auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); return false; } // verify magic { uint32_t magic; fin.read((char *) &magic, sizeof(magic)); if (magic != GGML_FILE_MAGIC) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); return false; } } // load hparams { auto & hparams = model.hparams; fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); fin.read((char *) &hparams.ftype, sizeof(hparams.ftype)); const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); printf("%s: n_embd = %d\n", __func__, hparams.n_embd); printf("%s: n_head = %d\n", __func__, hparams.n_head); printf("%s: n_layer = %d\n", __func__, hparams.n_layer); printf("%s: ftype = %d\n", __func__, hparams.ftype); printf("%s: qntvr = %d\n", __func__, qntvr); hparams.ftype %= GGML_QNT_VERSION_FACTOR; } // load vocab { int32_t n_vocab = 0; fin.read((char *) &n_vocab, sizeof(n_vocab)); if (n_vocab != model.hparams.n_vocab) { fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); return false; } std::string word; std::vector buf(128); for (int i = 0; i < n_vocab; i++) { uint32_t len; fin.read((char *) &len, sizeof(len)); buf.resize(len); fin.read((char *) buf.data(), len); word.assign(buf.data(), len); vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } } // for the big tensors, we have the option to store the data in 16-bit floats or quantized // in order to save memory and also to speed up the computation ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype)); if (wtype == GGML_TYPE_COUNT) { fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(), model.hparams.ftype); return false; } auto & ctx = model.ctx; size_t buffer_size = 0; { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; buffer_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g buffer_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b buffer_size += n_vocab*n_embd*ggml_type_sizef(wtype); // wte buffer_size += n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe buffer_size += n_vocab*n_embd*ggml_type_sizef(wtype); // lm_head buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g buffer_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b buffer_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w buffer_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b buffer_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w buffer_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b buffer_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w buffer_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b buffer_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w buffer_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b buffer_size += (6 + 12*n_layer)*128; // alignment overhead printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor)); printf("%s: backend buffer size = %6.2f MB\n", __func__, buffer_size/(1024.0*1024.0)); } // create the ggml context { size_t n_tensors = 2 + 6 + 12*model.hparams.n_layer; struct ggml_init_params params = { /*.mem_size =*/ ggml_tensor_overhead() * n_tensors, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; model.ctx = ggml_init(params); if (!model.ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return false; } } // initialize the backend #ifdef GGML_USE_CUBLAS if (n_gpu_layers > 0) { fprintf(stderr, "%s: using CUDA backend\n", __func__); model.backend = ggml_backend_cuda_init(); if (!model.backend) { fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); } } #endif #ifdef GGML_USE_METAL if (n_gpu_layers > 0) { fprintf(stderr, "%s: using Metal backend\n", __func__); ggml_metal_log_set_callback(ggml_log_callback_default, nullptr); model.backend = ggml_backend_metal_init(); if (!model.backend) { fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__); } } #endif if (!model.backend) { // fallback to CPU backend fprintf(stderr, "%s: using CPU backend\n", __func__); model.backend = ggml_backend_cpu_init(); } if (!model.backend) { fprintf(stderr, "%s: ggml_backend_cpu_init() failed\n", __func__); return false; } // allocate weights buffer model.buffer_w = ggml_backend_alloc_buffer(model.backend, buffer_size); // prepare memory for the weights { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; model.layers.resize(n_layer); model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx); model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); // map by name model.tensors["model/ln_f/g"] = model.ln_f_g; model.tensors["model/ln_f/b"] = model.ln_f_b; model.tensors["model/wte"] = model.wte; model.tensors["model/wpe"] = model.wpe; model.tensors["model/lm_head"] = model.lm_head; for (int i = 0; i < n_layer; ++i) { auto & layer = model.layers[i]; layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd); layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd); layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd); layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd); layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd); layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // map by name model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g; model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b; model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g; model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b; model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w; model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b; model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w; model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b; model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w; model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b; model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w; model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b; } } // override the default training context with the user-provided model.hparams.n_ctx = n_ctx; // key + value memory { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_mem = n_layer*n_ctx; const int n_elements = n_embd*n_mem; model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem); // create a backend buffer (can be in host or device memory) model.buffer_kv = ggml_backend_alloc_buffer(model.backend, memory_size + 256); // allocate the tensors into the backend buffer { ggml_allocr * alloc = ggml_allocr_new_from_buffer(model.buffer_kv); // this updates the pointers in the tensors to point to the correct location in the buffer // this is necessary since the ggml_context is .no_alloc == true // note that the buffer can actually be a device buffer, depending on the backend ggml_allocr_alloc(alloc, model.memory_k); ggml_allocr_alloc(alloc, model.memory_v); ggml_allocr_free(alloc); } } // load weights { ggml_allocr * alloc = ggml_allocr_new_from_buffer(model.buffer_w); size_t total_size = 0; bool has_lm_head = false; std::vector read_buf; while (true) { int32_t n_dims; int32_t length; int32_t ttype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ttype), sizeof(ttype)); if (fin.eof()) { break; } int32_t nelements = 1; int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); fin.read(&name[0], length); if (model.tensors.find(name) == model.tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.c_str()); return false; } auto tensor = model.tensors[name]; ggml_set_name(tensor, name.c_str()); if (ggml_nelements(tensor) != nelements) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.c_str()); return false; } if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n", __func__, name.c_str(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]); return false; } // for debugging if (0) { printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.c_str(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor)); } const size_t bpe = ggml_type_size(ggml_type(ttype)); if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", __func__, name.c_str(), ggml_nbytes(tensor), nelements*bpe); return false; } ggml_allocr_alloc(alloc, tensor); if (ggml_backend_is_cpu (model.backend) #ifdef GGML_USE_METAL || ggml_backend_is_metal(model.backend) #endif ) { // for the CPU and Metal backend, we can read directly into the tensor fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); } else { // read into a temporary buffer first, then copy to device memory read_buf.resize(ggml_nbytes(tensor)); fin.read(read_buf.data(), ggml_nbytes(tensor)); ggml_backend_tensor_set(tensor, read_buf.data(), 0, ggml_nbytes(tensor)); } // GPT-2 models share the WTE tensor as the LM head if (name == "model/wte" && has_lm_head == false) { //ggml_allocr_alloc(alloc, model.lm_head); //ggml_backend_tensor_copy(tensor, model.lm_head); model.lm_head = tensor; } if (name == "model/lm_head") { has_lm_head = true; } total_size += ggml_nbytes(tensor); } ggml_allocr_free(alloc); printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); } fin.close(); return true; } // build the computation graph struct ggml_cgraph * gpt2_graph( const gpt2_model & model, struct ggml_allocr * allocr, const int n_past, const std::vector & embd_inp) { const int N = embd_inp.size(); const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; // since we are using ggml-alloc, this buffer only needs enough space to hold the ggml_tensor and ggml_cgraph structs, but not the tensor data static size_t buf_size = ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead(); static std::vector buf(buf_size); struct ggml_init_params params = { /*.mem_size =*/ buf_size, /*.mem_buffer =*/ buf.data(), /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph() }; struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); ggml_allocr_alloc(allocr, embd); // avoid writing to tensors if we are only measuring the memory usage if (!ggml_allocr_is_measure(allocr)) { ggml_backend_tensor_set(embd, embd_inp.data(), 0, N*ggml_element_size(embd)); } struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); ggml_allocr_alloc(allocr, position); if (!ggml_allocr_is_measure(allocr)) { for (int i = 0; i < N; ++i) { int32_t v = n_past + i; ggml_backend_tensor_set(position, &v, i*sizeof(int32_t), sizeof(v)); } } struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); ggml_allocr_alloc(allocr, KQ_scale); if (!ggml_allocr_is_measure(allocr)) { float s = 1.0f/sqrtf(float(n_embd)/n_head); ggml_backend_tensor_set(KQ_scale, &s, 0, sizeof(s)); } // wte + wpe struct ggml_tensor * inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.wte, embd), ggml_get_rows(ctx0, model.wpe, position)); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * cur; // norm { // [ 768, N] cur = ggml_norm(ctx0, inpL, hparams.eps); // cur = ln_1_g*cur + ln_1_b // [ 768, N] cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_g), model.layers[il].ln_1_b); } // attn // [2304, 768] - model.layers[il].c_attn_attn_w // [2304, 1] - model.layers[il].c_attn_attn_b // [ 768, N] - cur (in) // [2304, N] - cur (out) // // cur = attn_w*cur + attn_b // [2304, N] { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_attn_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].c_attn_attn_b); } // self-attention { struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd); struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd); struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd); // store key and value to memory if (N >= 1) { struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) // [64, N, 12] struct ggml_tensor * Q = ggml_permute(ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)), 0, 2, 1, 3); // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) // [64, n_past + N, 12] struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd), n_embd/n_head, n_head, n_past + N), 0, 2, 1, 3); // GG: flash attention //struct ggml_tensor * V = // ggml_cpy(ctx0, // ggml_permute(ctx0, // ggml_reshape_3d(ctx0, // ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd), // n_embd/n_head, n_head, n_past + N), // 1, 2, 0, 3), // ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head)); //struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true); // K * Q // [n_past + N, N, 12] struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) // [n_past + N, N, 12] struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); // KQ_masked = mask_past(KQ_scaled) // [n_past + N, N, 12] struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); // KQ = soft_max(KQ_masked) // [n_past + N, N, 12] struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() // [n_past + N, 64, 12] struct ggml_tensor * V_trans = ggml_cpy(ctx0, ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd), n_embd/n_head, n_head, n_past + N), 1, 2, 0, 3), ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd/n_head, n_head)); // KQV = transpose(V) * KQ_soft_max // [64, N, 12] struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) // [64, 12, N] struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) // [768, N] cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); } // projection // [ 768, 768] - model.layers[il].c_attn_proj_w // [ 768, 1] - model.layers[il].c_attn_proj_b // [ 768, N] - cur (in) // [ 768, N] - cur (out) // // cur = proj_w*cur + proj_b // [768, N] { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_proj_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].c_attn_proj_b); } // add the input cur = ggml_add(ctx0, cur, inpL); struct ggml_tensor * inpFF = cur; // feed-forward network { // norm { cur = ggml_norm(ctx0, inpFF, hparams.eps); // cur = ln_2_g*cur + ln_2_b // [ 768, N] cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_g), model.layers[il].ln_2_b); } // fully connected // [3072, 768] - model.layers[il].c_mlp_fc_w // [3072, 1] - model.layers[il].c_mlp_fc_b // [ 768, N] - cur (in) // [3072, N] - cur (out) // // cur = fc_w*cur + fc_b // [3072, N] cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_fc_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].c_mlp_fc_b); // GELU activation // [3072, N] cur = ggml_gelu(ctx0, cur); // projection // [ 768, 3072] - model.layers[il].c_mlp_proj_w // [ 768, 1] - model.layers[il].c_mlp_proj_b // [3072, N] - cur (in) // [ 768, N] - cur (out) // // cur = proj_w*cur + proj_b // [768, N] cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_proj_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].c_mlp_proj_b); } // input for next layer inpL = ggml_add(ctx0, cur, inpFF); } // norm { // [ 768, N] inpL = ggml_norm(ctx0, inpL, hparams.eps); // inpL = ln_f_g*inpL + ln_f_b // [ 768, N] inpL = ggml_add(ctx0, ggml_mul(ctx0, inpL, model.ln_f_g), model.ln_f_b); } // inpL = WTE * inpL // [ 768, 50257] - model.lm_head // [ 768, N] - inpL inpL = ggml_mul_mat(ctx0, model.lm_head, inpL); // logits -> probs //inpL = ggml_soft_max(ctx0, inpL); ggml_build_forward_expand(gf, inpL); ggml_free(ctx0); return gf; } // evaluate the transformer // // - model: the model // - allocr: ggml_allocr to use to allocate the compute buffer // - n_threads: number of threads to use // - n_past: the context size so far // - embd_inp: the embeddings of the tokens in the context // - embd_w: the predicted logits for the next token // bool gpt2_eval( const gpt2_model & model, struct ggml_allocr * allocr, const int n_threads, const int n_past, const std::vector & embd_inp, std::vector & embd_w) { const int N = embd_inp.size(); const auto & hparams = model.hparams; const int n_vocab = hparams.n_vocab; // reset the allocator to free all the memory allocated during the previous inference ggml_allocr_reset(allocr); struct ggml_cgraph * gf = gpt2_graph(model, allocr, n_past, embd_inp); // allocate tensors ggml_allocr_alloc_graph(allocr, gf); // run the computation if (ggml_backend_is_cpu(model.backend)) { ggml_backend_cpu_set_n_threads(model.backend, n_threads); } #ifdef GGML_USE_METAL if (ggml_backend_is_metal(model.backend)) { ggml_backend_metal_set_n_cb(model.backend, n_threads); } #endif ggml_backend_graph_compute(model.backend, gf); //if (n_past%100 == 0) { // ggml_graph_print (&gf); // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); //} // in this case, the output tensor is the last one in the graph struct ggml_tensor * inpL = gf->nodes[gf->n_nodes - 1]; //embd_w.resize(n_vocab*N); //ggml_backend_tensor_get(inpL, embd_w.data(), 0, sizeof(float)*n_vocab*N); // return result just for the last token embd_w.resize(n_vocab); ggml_backend_tensor_get(inpL, embd_w.data(), (n_vocab*(N-1))*sizeof(float), sizeof(float)*n_vocab); return true; } int main(int argc, char ** argv) { ggml_time_init(); const int64_t t_main_start_us = ggml_time_us(); gpt_params params; params.model = "models/gpt-2-117M/ggml-model.bin"; if (gpt_params_parse(argc, argv, params) == false) { return 1; } if (params.seed < 0) { params.seed = time(NULL); } printf("%s: seed = %d\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.prompt.empty()) { params.prompt = gpt_random_prompt(rng); } int64_t t_load_us = 0; gpt_vocab vocab; gpt2_model model; // load the model { const int64_t t_start_us = ggml_time_us(); if (!gpt2_model_load(params.model, model, vocab, params.n_ctx, params.n_gpu_layers)) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return 1; } t_load_us = ggml_time_us() - t_start_us; test_gpt_tokenizer(vocab, params.token_test); } // keep this buffer alive while evaluating the model ggml_backend_buffer_t buf_compute; struct ggml_allocr * allocr = NULL; // allocate the compute buffer { // alignment required by the backend size_t align = ggml_backend_get_alignment(model.backend); allocr = ggml_allocr_new_measure(align); // create the worst case graph for memory usage estimation int n_tokens = std::min(model.hparams.n_ctx, params.n_batch); int n_past = model.hparams.n_ctx - n_tokens; struct ggml_cgraph * gf = gpt2_graph(model, allocr, n_past, std::vector(n_tokens, 0)); // compute the required memory size_t mem_size = ggml_allocr_alloc_graph(allocr, gf); // recreate the allocator with the required memory ggml_allocr_free(allocr); buf_compute = ggml_backend_alloc_buffer(model.backend, mem_size); allocr = ggml_allocr_new_from_buffer(buf_compute); fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0/1024.0); } int n_past = 0; int64_t t_sample_us = 0; int64_t t_predict_us = 0; std::vector logits; // tokenize the prompt std::vector embd_inp = ::gpt_tokenize(vocab, params.prompt); params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size()); printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str()); printf("%s: number of tokens in prompt = %zu, first 8 tokens: ", __func__, embd_inp.size()); for (int i = 0; i < std::min(8, (int) embd_inp.size()); i++) { printf("%d ", embd_inp[i]); } printf("\n\n"); // submit the input prompt token-by-token // this reduces the memory usage during inference, at the cost of a bit of speed at the beginning std::vector embd; for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++) { // predict if (embd.size() > 0) { const int64_t t_start_us = ggml_time_us(); if (!gpt2_eval(model, allocr, params.n_threads, n_past, embd, logits)) { printf("Failed to predict\n"); return 1; } t_predict_us += ggml_time_us() - t_start_us; } n_past += embd.size(); embd.clear(); if (i >= embd_inp.size()) { // sample next token const int top_k = params.top_k; const float top_p = params.top_p; const float temp = params.temp; const int n_vocab = model.hparams.n_vocab; gpt_vocab::id id = 0; { const int64_t t_start_sample_us = ggml_time_us(); id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng); t_sample_us += ggml_time_us() - t_start_sample_us; } // add it to the context embd.push_back(id); } else { // if here, it means we are still processing the input prompt for (size_t k = i; k < embd_inp.size(); k++) { embd.push_back(embd_inp[k]); if (int32_t(embd.size()) >= params.n_batch) { break; } } i += embd.size() - 1; } // display text for (auto id : embd) { printf("%s", vocab.id_to_token[id].c_str()); } fflush(stdout); // end of text token if (!params.ignore_eos && embd.back() == 50256) { break; } } // report timing { const int64_t t_main_end_us = ggml_time_us(); printf("\n\n"); printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f); printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past); printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); } ggml_free(model.ctx); ggml_backend_buffer_free(model.buffer_w); ggml_backend_buffer_free(model.buffer_kv); ggml_backend_buffer_free(buf_compute); ggml_backend_free(model.backend); return 0; }