# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import tempfile import time import traceback import unittest import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTextConfig, CLIPTextModel, CLIPTokenizer, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LCMScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel, logging, ) from diffusers.utils.testing_utils import ( CaptureLogger, enable_full_determinism, load_image, load_numpy, nightly, numpy_cosine_similarity_distance, require_accelerate_version_greater, require_python39_or_higher, require_torch_2, require_torch_gpu, require_torch_multi_gpu, run_test_in_subprocess, skip_mps, slow, torch_device, ) from ..pipeline_params import ( TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS, ) from ..test_pipelines_common import ( IPAdapterTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() # Will be run via run_test_in_subprocess def _test_stable_diffusion_compile(in_queue, out_queue, timeout): error = None try: inputs = in_queue.get(timeout=timeout) torch_device = inputs.pop("torch_device") seed = inputs.pop("seed") inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed) sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(torch_device) sd_pipe.unet.to(memory_format=torch.channels_last) sd_pipe.unet = torch.compile(sd_pipe.unet, mode="reduce-overhead", fullgraph=True) sd_pipe.set_progress_bar_config(disable=None) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239]) assert np.abs(image_slice - expected_slice).max() < 5e-3 except Exception: error = f"{traceback.format_exc()}" results = {"error": error} out_queue.put(results, timeout=timeout) out_queue.join() class StableDiffusionPipelineFastTests( IPAdapterTesterMixin, PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase, ): pipeline_class = StableDiffusionPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS def get_dummy_components(self, time_cond_proj_dim=None): cross_attention_dim = 8 torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(4, 8), layers_per_block=1, sample_size=32, time_cond_proj_dim=time_cond_proj_dim, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=cross_attention_dim, norm_num_groups=2, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[4, 8], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, norm_num_groups=2, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=cross_attention_dim, intermediate_size=16, layer_norm_eps=1e-05, num_attention_heads=2, num_hidden_layers=2, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, "image_encoder": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "np", } return inputs def test_stable_diffusion_ddim(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.1763, 0.4776, 0.4986, 0.2566, 0.3802, 0.4596, 0.5363, 0.3277, 0.3949]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_lcm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components(time_cond_proj_dim=256) sd_pipe = StableDiffusionPipeline(**components) sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.2368, 0.4900, 0.5019, 0.2723, 0.4473, 0.4578, 0.4551, 0.3532, 0.4133]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_lcm_custom_timesteps(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components(time_cond_proj_dim=256) sd_pipe = StableDiffusionPipeline(**components) sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) del inputs["num_inference_steps"] inputs["timesteps"] = [999, 499] output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.2368, 0.4900, 0.5019, 0.2723, 0.4473, 0.4578, 0.4551, 0.3532, 0.4133]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_ays(self): from diffusers.schedulers import AysSchedules timestep_schedule = AysSchedules["StableDiffusionTimesteps"] sigma_schedule = AysSchedules["StableDiffusionSigmas"] device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components(time_cond_proj_dim=256) sd_pipe = StableDiffusionPipeline(**components) sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["num_inference_steps"] = 10 output = sd_pipe(**inputs).images inputs = self.get_dummy_inputs(device) inputs["num_inference_steps"] = None inputs["timesteps"] = timestep_schedule output_ts = sd_pipe(**inputs).images inputs = self.get_dummy_inputs(device) inputs["num_inference_steps"] = None inputs["sigmas"] = sigma_schedule output_sigmas = sd_pipe(**inputs).images assert ( np.abs(output_sigmas.flatten() - output_ts.flatten()).max() < 1e-3 ), "ays timesteps and ays sigmas should have the same outputs" assert ( np.abs(output.flatten() - output_ts.flatten()).max() > 1e-3 ), "use ays timesteps should have different outputs" assert ( np.abs(output.flatten() - output_sigmas.flatten()).max() > 1e-3 ), "use ays sigmas should have different outputs" def test_stable_diffusion_prompt_embeds(self): components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) inputs["prompt"] = 3 * [inputs["prompt"]] # forward output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] inputs = self.get_dummy_inputs(torch_device) prompt = 3 * [inputs.pop("prompt")] text_inputs = sd_pipe.tokenizer( prompt, padding="max_length", max_length=sd_pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_inputs = text_inputs["input_ids"].to(torch_device) prompt_embeds = sd_pipe.text_encoder(text_inputs)[0] inputs["prompt_embeds"] = prompt_embeds # forward output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 def test_stable_diffusion_negative_prompt_embeds(self): components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) negative_prompt = 3 * ["this is a negative prompt"] inputs["negative_prompt"] = negative_prompt inputs["prompt"] = 3 * [inputs["prompt"]] # forward output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] inputs = self.get_dummy_inputs(torch_device) prompt = 3 * [inputs.pop("prompt")] embeds = [] for p in [prompt, negative_prompt]: text_inputs = sd_pipe.tokenizer( p, padding="max_length", max_length=sd_pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_inputs = text_inputs["input_ids"].to(torch_device) embeds.append(sd_pipe.text_encoder(text_inputs)[0]) inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds # forward output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 def test_stable_diffusion_prompt_embeds_no_text_encoder_or_tokenizer(self): components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) inputs["negative_prompt"] = "this is a negative prompt" # forward output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] inputs = self.get_dummy_inputs(torch_device) prompt = inputs.pop("prompt") negative_prompt = "this is a negative prompt" prompt_embeds, negative_prompt_embeds = sd_pipe.encode_prompt( prompt, torch_device, 1, True, negative_prompt=negative_prompt, prompt_embeds=None, negative_prompt_embeds=None, ) inputs["prompt_embeds"] = prompt_embeds inputs["negative_prompt_embeds"] = negative_prompt_embeds sd_pipe.text_encoder = None sd_pipe.tokenizer = None # forward output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 def test_stable_diffusion_prompt_embeds_with_plain_negative_prompt_list(self): components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) negative_prompt = 3 * ["this is a negative prompt"] inputs["negative_prompt"] = negative_prompt inputs["prompt"] = 3 * [inputs["prompt"]] # forward output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] inputs = self.get_dummy_inputs(torch_device) inputs["negative_prompt"] = negative_prompt prompt = 3 * [inputs.pop("prompt")] text_inputs = sd_pipe.tokenizer( prompt, padding="max_length", max_length=sd_pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_inputs = text_inputs["input_ids"].to(torch_device) prompt_embeds = sd_pipe.text_encoder(text_inputs)[0] inputs["prompt_embeds"] = prompt_embeds # forward output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 def test_stable_diffusion_ddim_factor_8(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs, height=136, width=136) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 136, 136, 3) expected_slice = np.array([0.4720, 0.5426, 0.5160, 0.3961, 0.4696, 0.4296, 0.5738, 0.5888, 0.5481]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_pndm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.1941, 0.4748, 0.4880, 0.2222, 0.4221, 0.4545, 0.5604, 0.3488, 0.3902]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_no_safety_checker(self): pipe = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None ) assert isinstance(pipe, StableDiffusionPipeline) assert isinstance(pipe.scheduler, LMSDiscreteScheduler) assert pipe.safety_checker is None image = pipe("example prompt", num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe = StableDiffusionPipeline.from_pretrained(tmpdirname) # sanity check that the pipeline still works assert pipe.safety_checker is None image = pipe("example prompt", num_inference_steps=2).images[0] assert image is not None def test_stable_diffusion_k_lms(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.2681, 0.4785, 0.4857, 0.2426, 0.4473, 0.4481, 0.5610, 0.3676, 0.3855]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_k_euler_ancestral(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.2682, 0.4782, 0.4855, 0.2424, 0.4472, 0.4479, 0.5612, 0.3676, 0.3854]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_k_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.2681, 0.4785, 0.4857, 0.2426, 0.4473, 0.4481, 0.5610, 0.3676, 0.3855]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_vae_slicing(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) image_count = 4 inputs = self.get_dummy_inputs(device) inputs["prompt"] = [inputs["prompt"]] * image_count output_1 = sd_pipe(**inputs) # make sure sliced vae decode yields the same result sd_pipe.enable_vae_slicing() inputs = self.get_dummy_inputs(device) inputs["prompt"] = [inputs["prompt"]] * image_count output_2 = sd_pipe(**inputs) # there is a small discrepancy at image borders vs. full batch decode assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3 def test_stable_diffusion_vae_tiling(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() # make sure here that pndm scheduler skips prk components["safety_checker"] = None sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" # Test that tiled decode at 512x512 yields the same result as the non-tiled decode generator = torch.Generator(device=device).manual_seed(0) output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") # make sure tiled vae decode yields the same result sd_pipe.enable_vae_tiling() generator = torch.Generator(device=device).manual_seed(0) output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 5e-1 # test that tiled decode works with various shapes shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)] for shape in shapes: zeros = torch.zeros(shape).to(device) sd_pipe.vae.decode(zeros) def test_stable_diffusion_negative_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = PNDMScheduler(skip_prk_steps=True) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) negative_prompt = "french fries" output = sd_pipe(**inputs, negative_prompt=negative_prompt) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.1907, 0.4709, 0.4858, 0.2224, 0.4223, 0.4539, 0.5606, 0.3489, 0.3900]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_long_prompt(self): components = self.get_dummy_components() components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) do_classifier_free_guidance = True negative_prompt = None num_images_per_prompt = 1 logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion") logger.setLevel(logging.WARNING) prompt = 100 * "@" with CaptureLogger(logger) as cap_logger: negative_text_embeddings, text_embeddings = sd_pipe.encode_prompt( prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) if negative_text_embeddings is not None: text_embeddings = torch.cat([negative_text_embeddings, text_embeddings]) # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25 assert cap_logger.out.count("@") == 25 negative_prompt = "Hello" with CaptureLogger(logger) as cap_logger_2: negative_text_embeddings_2, text_embeddings_2 = sd_pipe.encode_prompt( prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) if negative_text_embeddings_2 is not None: text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2]) assert cap_logger.out == cap_logger_2.out prompt = 25 * "@" with CaptureLogger(logger) as cap_logger_3: negative_text_embeddings_3, text_embeddings_3 = sd_pipe.encode_prompt( prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) if negative_text_embeddings_3 is not None: text_embeddings_3 = torch.cat([negative_text_embeddings_3, text_embeddings_3]) assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape assert text_embeddings.shape[1] == 77 assert cap_logger_3.out == "" def test_stable_diffusion_height_width_opt(self): components = self.get_dummy_components() components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config) sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) prompt = "hey" output = sd_pipe(prompt, num_inference_steps=1, output_type="np") image_shape = output.images[0].shape[:2] assert image_shape == (64, 64) output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np") image_shape = output.images[0].shape[:2] assert image_shape == (96, 96) config = dict(sd_pipe.unet.config) config["sample_size"] = 96 sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device) output = sd_pipe(prompt, num_inference_steps=1, output_type="np") image_shape = output.images[0].shape[:2] assert image_shape == (192, 192) def test_attention_slicing_forward_pass(self): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) # MPS currently doesn't support ComplexFloats, which are required for freeU - see https://github.com/huggingface/diffusers/issues/7569. @skip_mps def test_freeu_enabled(self): components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) prompt = "hey" output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4) output_freeu = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images assert not np.allclose( output[0, -3:, -3:, -1], output_freeu[0, -3:, -3:, -1] ), "Enabling of FreeU should lead to different results." def test_freeu_disabled(self): components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) prompt = "hey" output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4) sd_pipe.disable_freeu() freeu_keys = {"s1", "s2", "b1", "b2"} for upsample_block in sd_pipe.unet.up_blocks: for key in freeu_keys: assert getattr(upsample_block, key) is None, f"Disabling of FreeU should have set {key} to None." output_no_freeu = sd_pipe( prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0) ).images assert np.allclose( output[0, -3:, -3:, -1], output_no_freeu[0, -3:, -3:, -1] ), "Disabling of FreeU should lead to results similar to the default pipeline results." def test_fused_qkv_projections(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images original_image_slice = image[0, -3:, -3:, -1] sd_pipe.fuse_qkv_projections() inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice_fused = image[0, -3:, -3:, -1] sd_pipe.unfuse_qkv_projections() inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice_disabled = image[0, -3:, -3:, -1] assert np.allclose( original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2 ), "Fusion of QKV projections shouldn't affect the outputs." assert np.allclose( image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2 ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." assert np.allclose( original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 ), "Original outputs should match when fused QKV projections are disabled." def test_pipeline_interrupt(self): components = self.get_dummy_components() sd_pipe = StableDiffusionPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) prompt = "hey" num_inference_steps = 3 # store intermediate latents from the generation process class PipelineState: def __init__(self): self.state = [] def apply(self, pipe, i, t, callback_kwargs): self.state.append(callback_kwargs["latents"]) return callback_kwargs pipe_state = PipelineState() sd_pipe( prompt, num_inference_steps=num_inference_steps, output_type="np", generator=torch.Generator("cpu").manual_seed(0), callback_on_step_end=pipe_state.apply, ).images # interrupt generation at step index interrupt_step_idx = 1 def callback_on_step_end(pipe, i, t, callback_kwargs): if i == interrupt_step_idx: pipe._interrupt = True return callback_kwargs output_interrupted = sd_pipe( prompt, num_inference_steps=num_inference_steps, output_type="latent", generator=torch.Generator("cpu").manual_seed(0), callback_on_step_end=callback_on_step_end, ).images # fetch intermediate latents at the interrupted step # from the completed generation process intermediate_latent = pipe_state.state[interrupt_step_idx] # compare the intermediate latent to the output of the interrupted process # they should be the same assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4) @slow @require_torch_gpu class StableDiffusionPipelineSlowTests(unittest.TestCase): def setUp(self): gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_stable_diffusion_1_1_pndm(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1") sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.4363, 0.4355, 0.3667, 0.4066, 0.3970, 0.3866, 0.4394, 0.4356, 0.4059]) assert np.abs(image_slice - expected_slice).max() < 3e-3 def test_stable_diffusion_v1_4_with_freeu(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 25 sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4) image = sd_pipe(**inputs).images image = image[0, -3:, -3:, -1].flatten() expected_image = [0.0721, 0.0588, 0.0268, 0.0384, 0.0636, 0.0, 0.0429, 0.0344, 0.0309] max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_1_4_pndm(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.5740, 0.4784, 0.3162, 0.6358, 0.5831, 0.5505, 0.5082, 0.5631, 0.5575]) assert np.abs(image_slice - expected_slice).max() < 3e-3 def test_stable_diffusion_ddim(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239]) assert np.abs(image_slice - expected_slice).max() < 1e-4 def test_stable_diffusion_lms(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455]) assert np.abs(image_slice - expected_slice).max() < 3e-3 def test_stable_diffusion_dpm(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None) sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config( sd_pipe.scheduler.config, final_sigmas_type="sigma_min", ) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000]) assert np.abs(image_slice - expected_slice).max() < 3e-3 def test_stable_diffusion_attention_slicing(self): torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) pipe.unet.set_default_attn_processor() pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) # enable attention slicing pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) image_sliced = pipe(**inputs).images mem_bytes = torch.cuda.max_memory_allocated() torch.cuda.reset_peak_memory_stats() # make sure that less than 3.75 GB is allocated assert mem_bytes < 3.75 * 10**9 # disable slicing pipe.disable_attention_slicing() pipe.unet.set_default_attn_processor() inputs = self.get_inputs(torch_device, dtype=torch.float16) image = pipe(**inputs).images # make sure that more than 3.75 GB is allocated mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes > 3.75 * 10**9 max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten()) assert max_diff < 1e-3 def test_stable_diffusion_vae_slicing(self): torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() # enable vae slicing pipe.enable_vae_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) inputs["prompt"] = [inputs["prompt"]] * 4 inputs["latents"] = torch.cat([inputs["latents"]] * 4) image_sliced = pipe(**inputs).images mem_bytes = torch.cuda.max_memory_allocated() torch.cuda.reset_peak_memory_stats() # make sure that less than 4 GB is allocated assert mem_bytes < 4e9 # disable vae slicing pipe.disable_vae_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) inputs["prompt"] = [inputs["prompt"]] * 4 inputs["latents"] = torch.cat([inputs["latents"]] * 4) image = pipe(**inputs).images # make sure that more than 4 GB is allocated mem_bytes = torch.cuda.max_memory_allocated() assert mem_bytes > 4e9 # There is a small discrepancy at the image borders vs. a fully batched version. max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten()) assert max_diff < 1e-2 def test_stable_diffusion_vae_tiling(self): torch.cuda.reset_peak_memory_stats() model_id = "CompVis/stable-diffusion-v1-4" pipe = StableDiffusionPipeline.from_pretrained( model_id, revision="fp16", torch_dtype=torch.float16, safety_checker=None ) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() pipe.unet = pipe.unet.to(memory_format=torch.channels_last) pipe.vae = pipe.vae.to(memory_format=torch.channels_last) prompt = "a photograph of an astronaut riding a horse" # enable vae tiling pipe.enable_vae_tiling() pipe.enable_model_cpu_offload() generator = torch.Generator(device="cpu").manual_seed(0) output_chunked = pipe( [prompt], width=1024, height=1024, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="np", ) image_chunked = output_chunked.images mem_bytes = torch.cuda.max_memory_allocated() # disable vae tiling pipe.disable_vae_tiling() generator = torch.Generator(device="cpu").manual_seed(0) output = pipe( [prompt], width=1024, height=1024, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="np", ) image = output.images assert mem_bytes < 1e10 max_diff = numpy_cosine_similarity_distance(image_chunked.flatten(), image.flatten()) assert max_diff < 1e-2 def test_stable_diffusion_fp16_vs_autocast(self): # this test makes sure that the original model with autocast # and the new model with fp16 yield the same result pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device, dtype=torch.float16) image_fp16 = pipe(**inputs).images with torch.autocast(torch_device): inputs = self.get_inputs(torch_device) image_autocast = pipe(**inputs).images # Make sure results are close enough diff = np.abs(image_fp16.flatten() - image_autocast.flatten()) # They ARE different since ops are not run always at the same precision # however, they should be extremely close. assert diff.mean() < 2e-2 def test_stable_diffusion_intermediate_state(self): number_of_steps = 0 def callback_fn(step: int, timestep: int, latents: torch.Tensor) -> None: callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 1: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 callback_fn.has_been_called = False pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs(torch_device, dtype=torch.float16) pipe(**inputs, callback=callback_fn, callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == inputs["num_inference_steps"] def test_stable_diffusion_low_cpu_mem_usage(self): pipeline_id = "CompVis/stable-diffusion-v1-4" start_time = time.time() pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16) pipeline_low_cpu_mem_usage.to(torch_device) low_cpu_mem_usage_time = time.time() - start_time start_time = time.time() _ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False) normal_load_time = time.time() - start_time assert 2 * low_cpu_mem_usage_time < normal_load_time def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() inputs = self.get_inputs(torch_device, dtype=torch.float16) _ = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 2.8 GB is allocated assert mem_bytes < 2.8 * 10**9 def test_stable_diffusion_pipeline_with_model_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() inputs = self.get_inputs(torch_device, dtype=torch.float16) # Normal inference pipe = StableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, ) pipe.unet.set_default_attn_processor() pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) outputs = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # With model offloading # Reload but don't move to cuda pipe = StableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, ) pipe.unet.set_default_attn_processor() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device, dtype=torch.float16) outputs_offloaded = pipe(**inputs) mem_bytes_offloaded = torch.cuda.max_memory_allocated() images = outputs.images offloaded_images = outputs_offloaded.images max_diff = numpy_cosine_similarity_distance(images.flatten(), offloaded_images.flatten()) assert max_diff < 1e-3 assert mem_bytes_offloaded < mem_bytes assert mem_bytes_offloaded < 3.5 * 10**9 for module in pipe.text_encoder, pipe.unet, pipe.vae: assert module.device == torch.device("cpu") # With attention slicing torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe.enable_attention_slicing() _ = pipe(**inputs) mem_bytes_slicing = torch.cuda.max_memory_allocated() assert mem_bytes_slicing < mem_bytes_offloaded assert mem_bytes_slicing < 3 * 10**9 def test_stable_diffusion_textual_inversion(self): pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons") a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt") a111_file_neg = hf_hub_download( "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt" ) pipe.load_textual_inversion(a111_file) pipe.load_textual_inversion(a111_file_neg) pipe.to("cuda") generator = torch.Generator(device="cpu").manual_seed(1) prompt = "An logo of a turtle in strong Style-Winter with " neg_prompt = "Style-Winter-neg" image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0] expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 8e-1 def test_stable_diffusion_textual_inversion_with_model_cpu_offload(self): pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") pipe.enable_model_cpu_offload() pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons") a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt") a111_file_neg = hf_hub_download( "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt" ) pipe.load_textual_inversion(a111_file) pipe.load_textual_inversion(a111_file_neg) generator = torch.Generator(device="cpu").manual_seed(1) prompt = "An logo of a turtle in strong Style-Winter with " neg_prompt = "Style-Winter-neg" image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0] expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 8e-1 def test_stable_diffusion_textual_inversion_with_sequential_cpu_offload(self): pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") pipe.enable_sequential_cpu_offload() pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons") a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt") a111_file_neg = hf_hub_download( "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt" ) pipe.load_textual_inversion(a111_file) pipe.load_textual_inversion(a111_file_neg) generator = torch.Generator(device="cpu").manual_seed(1) prompt = "An logo of a turtle in strong Style-Winter with " neg_prompt = "Style-Winter-neg" image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0] expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 8e-1 @require_python39_or_higher @require_torch_2 def test_stable_diffusion_compile(self): seed = 0 inputs = self.get_inputs(torch_device, seed=seed) # Can't pickle a Generator object del inputs["generator"] inputs["torch_device"] = torch_device inputs["seed"] = seed run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=inputs) def test_stable_diffusion_lcm(self): unet = UNet2DConditionModel.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", subfolder="unet") sd_pipe = StableDiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", unet=unet).to(torch_device) sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 6 inputs["output_type"] = "pil" image = sd_pipe(**inputs).images[0] expected_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_full/stable_diffusion_lcm.png" ) image = sd_pipe.image_processor.pil_to_numpy(image) expected_image = sd_pipe.image_processor.pil_to_numpy(expected_image) max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten()) assert max_diff < 1e-2 @slow @require_torch_gpu class StableDiffusionPipelineCkptTests(unittest.TestCase): def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_download_from_hub(self): ckpt_paths = [ "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors", "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors", ] for ckpt_path in ckpt_paths: pipe = StableDiffusionPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") image_out = pipe("test", num_inference_steps=1, output_type="np").images[0] assert image_out.shape == (512, 512, 3) def test_download_local(self): ckpt_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.safetensors") config_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-inference.yaml") pipe = StableDiffusionPipeline.from_single_file( ckpt_filename, config_files={"v1": config_filename}, torch_dtype=torch.float16 ) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") image_out = pipe("test", num_inference_steps=1, output_type="np").images[0] assert image_out.shape == (512, 512, 3) @nightly @require_torch_gpu class StableDiffusionPipelineNightlyTests(unittest.TestCase): def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_stable_diffusion_1_4_pndm(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_1_5_pndm(self): sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_ddim(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 3e-3 def test_stable_diffusion_lms(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 def test_stable_diffusion_euler(self): sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device) sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) image = sd_pipe(**inputs).images[0] expected_image = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy" ) max_diff = np.abs(expected_image - image).max() assert max_diff < 1e-3 # (sayakpaul): This test suite was run in the DGX with two GPUs (1, 2). @slow @require_torch_multi_gpu @require_accelerate_version_greater("0.27.0") class StableDiffusionPipelineDeviceMapTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, generator_device="cpu", seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) inputs = { "prompt": "a photograph of an astronaut riding a horse", "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "np", } return inputs def get_pipeline_output_without_device_map(self): sd_pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 ).to(torch_device) sd_pipe.set_progress_bar_config(disable=True) inputs = self.get_inputs() no_device_map_image = sd_pipe(**inputs).images del sd_pipe return no_device_map_image def test_forward_pass_balanced_device_map(self): no_device_map_image = self.get_pipeline_output_without_device_map() sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 ) sd_pipe_with_device_map.set_progress_bar_config(disable=True) inputs = self.get_inputs() device_map_image = sd_pipe_with_device_map(**inputs).images max_diff = np.abs(device_map_image - no_device_map_image).max() assert max_diff < 1e-3 def test_components_put_in_right_devices(self): sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 ) assert len(set(sd_pipe_with_device_map.hf_device_map.values())) >= 2 def test_max_memory(self): no_device_map_image = self.get_pipeline_output_without_device_map() sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", device_map="balanced", max_memory={0: "1GB", 1: "1GB"}, torch_dtype=torch.float16, ) sd_pipe_with_device_map.set_progress_bar_config(disable=True) inputs = self.get_inputs() device_map_image = sd_pipe_with_device_map(**inputs).images max_diff = np.abs(device_map_image - no_device_map_image).max() assert max_diff < 1e-3 def test_reset_device_map(self): sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 ) sd_pipe_with_device_map.reset_device_map() assert sd_pipe_with_device_map.hf_device_map is None for name, component in sd_pipe_with_device_map.components.items(): if isinstance(component, torch.nn.Module): assert component.device.type == "cpu" def test_reset_device_map_to(self): sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 ) sd_pipe_with_device_map.reset_device_map() assert sd_pipe_with_device_map.hf_device_map is None # Make sure `to()` can be used and the pipeline can be called. pipe = sd_pipe_with_device_map.to("cuda") _ = pipe("hello", num_inference_steps=2) def test_reset_device_map_enable_model_cpu_offload(self): sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 ) sd_pipe_with_device_map.reset_device_map() assert sd_pipe_with_device_map.hf_device_map is None # Make sure `enable_model_cpu_offload()` can be used and the pipeline can be called. sd_pipe_with_device_map.enable_model_cpu_offload() _ = sd_pipe_with_device_map("hello", num_inference_steps=2) def test_reset_device_map_enable_sequential_cpu_offload(self): sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16 ) sd_pipe_with_device_map.reset_device_map() assert sd_pipe_with_device_map.hf_device_map is None # Make sure `enable_sequential_cpu_offload()` can be used and the pipeline can be called. sd_pipe_with_device_map.enable_sequential_cpu_offload() _ = sd_pipe_with_device_map("hello", num_inference_steps=2)