# 이미지 밝기 조절하기 Stable Diffusion 파이프라인은 [일반적인 디퓨전 노이즈 스케줄과 샘플 단계에 결함이 있음](https://huggingface.co/papers/2305.08891) 논문에서 설명한 것처럼 매우 밝거나 어두운 이미지를 생성하는 데는 성능이 평범합니다. 이 논문에서 제안한 솔루션은 현재 [`DDIMScheduler`]에 구현되어 있으며 이미지의 밝기를 개선하는 데 사용할 수 있습니다. 💡 제안된 솔루션에 대한 자세한 내용은 위에 링크된 논문을 참고하세요! 해결책 중 하나는 *v 예측값*과 *v 로스*로 모델을 훈련하는 것입니다. 다음 flag를 [`train_text_to_image.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) 또는 [`train_text_to_image_lora.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py) 스크립트에 추가하여 `v_prediction`을 활성화합니다: ```bash --prediction_type="v_prediction" ``` 예를 들어, `v_prediction`으로 미세 조정된 [`ptx0/pseudo-journey-v2`](https://huggingface.co/ptx0/pseudo-journey-v2) 체크포인트를 사용해 보겠습니다. 다음으로 [`DDIMScheduler`]에서 다음 파라미터를 설정합니다: 1. rescale_betas_zero_snr=True`, 노이즈 스케줄을 제로 터미널 신호 대 잡음비(SNR)로 재조정합니다. 2. `timestep_spacing="trailing"`, 마지막 타임스텝부터 샘플링 시작 ```py >>> from diffusers import DiffusionPipeline, DDIMScheduler >>> pipeline = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2") # switch the scheduler in the pipeline to use the DDIMScheduler >>> pipeline.scheduler = DDIMScheduler.from_config( ... pipeline.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing" ... ) >>> pipeline.to("cuda") ``` 마지막으로 파이프라인에 대한 호출에서 `guidance_rescale`을 설정하여 과다 노출을 방지합니다: ```py prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k" image = pipeline(prompt, guidance_rescale=0.7).images[0] ```