# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import PixArtTransformer2DModel, Transformer2DModel from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, slow, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class PixArtTransformer2DModelTests(ModelTesterMixin, unittest.TestCase): model_class = PixArtTransformer2DModel main_input_name = "hidden_states" # We override the items here because the transformer under consideration is small. model_split_percents = [0.7, 0.6, 0.6] @property def dummy_input(self): batch_size = 4 in_channels = 4 sample_size = 8 scheduler_num_train_steps = 1000 cross_attention_dim = 8 seq_len = 8 hidden_states = floats_tensor((batch_size, in_channels, sample_size, sample_size)).to(torch_device) timesteps = torch.randint(0, scheduler_num_train_steps, size=(batch_size,)).to(torch_device) encoder_hidden_states = floats_tensor((batch_size, seq_len, cross_attention_dim)).to(torch_device) return { "hidden_states": hidden_states, "timestep": timesteps, "encoder_hidden_states": encoder_hidden_states, "added_cond_kwargs": {"aspect_ratio": None, "resolution": None}, } @property def input_shape(self): return (4, 8, 8) @property def output_shape(self): return (8, 8, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { "sample_size": 8, "num_layers": 1, "patch_size": 2, "attention_head_dim": 2, "num_attention_heads": 2, "in_channels": 4, "cross_attention_dim": 8, "out_channels": 8, "attention_bias": True, "activation_fn": "gelu-approximate", "num_embeds_ada_norm": 8, "norm_type": "ada_norm_single", "norm_elementwise_affine": False, "norm_eps": 1e-6, "use_additional_conditions": False, "caption_channels": None, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_output(self): super().test_output( expected_output_shape=(self.dummy_input[self.main_input_name].shape[0],) + self.output_shape ) def test_correct_class_remapping_from_dict_config(self): init_dict, _ = self.prepare_init_args_and_inputs_for_common() model = Transformer2DModel.from_config(init_dict) assert isinstance(model, PixArtTransformer2DModel) def test_correct_class_remapping_from_pretrained_config(self): config = PixArtTransformer2DModel.load_config("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="transformer") model = Transformer2DModel.from_config(config) assert isinstance(model, PixArtTransformer2DModel) @slow def test_correct_class_remapping(self): model = Transformer2DModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="transformer") assert isinstance(model, PixArtTransformer2DModel)