|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
import re |
|
import sys |
|
import tempfile |
|
import traceback |
|
import warnings |
|
from pathlib import Path |
|
from typing import Dict, List, Optional, Union |
|
from uuid import uuid4 |
|
|
|
from huggingface_hub import ( |
|
ModelCard, |
|
ModelCardData, |
|
create_repo, |
|
hf_hub_download, |
|
model_info, |
|
snapshot_download, |
|
upload_folder, |
|
) |
|
from huggingface_hub.constants import HF_HUB_CACHE, HF_HUB_DISABLE_TELEMETRY, HF_HUB_OFFLINE |
|
from huggingface_hub.file_download import REGEX_COMMIT_HASH |
|
from huggingface_hub.utils import ( |
|
EntryNotFoundError, |
|
RepositoryNotFoundError, |
|
RevisionNotFoundError, |
|
is_jinja_available, |
|
validate_hf_hub_args, |
|
) |
|
from packaging import version |
|
from requests import HTTPError |
|
|
|
from .. import __version__ |
|
from .constants import ( |
|
DEPRECATED_REVISION_ARGS, |
|
HUGGINGFACE_CO_RESOLVE_ENDPOINT, |
|
SAFETENSORS_WEIGHTS_NAME, |
|
WEIGHTS_NAME, |
|
) |
|
from .import_utils import ( |
|
ENV_VARS_TRUE_VALUES, |
|
_flax_version, |
|
_jax_version, |
|
_onnxruntime_version, |
|
_torch_version, |
|
is_flax_available, |
|
is_onnx_available, |
|
is_torch_available, |
|
) |
|
from .logging import get_logger |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "model_card_template.md" |
|
SESSION_ID = uuid4().hex |
|
|
|
|
|
def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str: |
|
""" |
|
Formats a user-agent string with basic info about a request. |
|
""" |
|
ua = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" |
|
if HF_HUB_DISABLE_TELEMETRY or HF_HUB_OFFLINE: |
|
return ua + "; telemetry/off" |
|
if is_torch_available(): |
|
ua += f"; torch/{_torch_version}" |
|
if is_flax_available(): |
|
ua += f"; jax/{_jax_version}" |
|
ua += f"; flax/{_flax_version}" |
|
if is_onnx_available(): |
|
ua += f"; onnxruntime/{_onnxruntime_version}" |
|
|
|
if os.environ.get("DIFFUSERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES: |
|
ua += "; is_ci/true" |
|
if isinstance(user_agent, dict): |
|
ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items()) |
|
elif isinstance(user_agent, str): |
|
ua += "; " + user_agent |
|
return ua |
|
|
|
|
|
def load_or_create_model_card( |
|
repo_id_or_path: str = None, |
|
token: Optional[str] = None, |
|
is_pipeline: bool = False, |
|
from_training: bool = False, |
|
model_description: Optional[str] = None, |
|
base_model: str = None, |
|
prompt: Optional[str] = None, |
|
license: Optional[str] = None, |
|
widget: Optional[List[dict]] = None, |
|
inference: Optional[bool] = None, |
|
) -> ModelCard: |
|
""" |
|
Loads or creates a model card. |
|
|
|
Args: |
|
repo_id_or_path (`str`): |
|
The repo id (e.g., "runwayml/stable-diffusion-v1-5") or local path where to look for the model card. |
|
token (`str`, *optional*): |
|
Authentication token. Will default to the stored token. See https://huggingface.co/settings/token for more |
|
details. |
|
is_pipeline (`bool`): |
|
Boolean to indicate if we're adding tag to a [`DiffusionPipeline`]. |
|
from_training: (`bool`): Boolean flag to denote if the model card is being created from a training script. |
|
model_description (`str`, *optional*): Model description to add to the model card. Helpful when using |
|
`load_or_create_model_card` from a training script. |
|
base_model (`str`): Base model identifier (e.g., "stabilityai/stable-diffusion-xl-base-1.0"). Useful |
|
for DreamBooth-like training. |
|
prompt (`str`, *optional*): Prompt used for training. Useful for DreamBooth-like training. |
|
license: (`str`, *optional*): License of the output artifact. Helpful when using |
|
`load_or_create_model_card` from a training script. |
|
widget (`List[dict]`, *optional*): Widget to accompany a gallery template. |
|
inference: (`bool`, optional): Whether to turn on inference widget. Helpful when using |
|
`load_or_create_model_card` from a training script. |
|
""" |
|
if not is_jinja_available(): |
|
raise ValueError( |
|
"Modelcard rendering is based on Jinja templates." |
|
" Please make sure to have `jinja` installed before using `load_or_create_model_card`." |
|
" To install it, please run `pip install Jinja2`." |
|
) |
|
|
|
try: |
|
|
|
model_card = ModelCard.load(repo_id_or_path, token=token) |
|
except (EntryNotFoundError, RepositoryNotFoundError): |
|
|
|
if from_training: |
|
model_card = ModelCard.from_template( |
|
card_data=ModelCardData( |
|
license=license, |
|
library_name="diffusers", |
|
inference=inference, |
|
base_model=base_model, |
|
instance_prompt=prompt, |
|
widget=widget, |
|
), |
|
template_path=MODEL_CARD_TEMPLATE_PATH, |
|
model_description=model_description, |
|
) |
|
else: |
|
card_data = ModelCardData() |
|
component = "pipeline" if is_pipeline else "model" |
|
if model_description is None: |
|
model_description = f"This is the model card of a 🧨 diffusers {component} that has been pushed on the Hub. This model card has been automatically generated." |
|
model_card = ModelCard.from_template(card_data, model_description=model_description) |
|
|
|
return model_card |
|
|
|
|
|
def populate_model_card(model_card: ModelCard, tags: Union[str, List[str]] = None) -> ModelCard: |
|
"""Populates the `model_card` with library name and optional tags.""" |
|
if model_card.data.library_name is None: |
|
model_card.data.library_name = "diffusers" |
|
|
|
if tags is not None: |
|
if isinstance(tags, str): |
|
tags = [tags] |
|
if model_card.data.tags is None: |
|
model_card.data.tags = [] |
|
for tag in tags: |
|
model_card.data.tags.append(tag) |
|
|
|
return model_card |
|
|
|
|
|
def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str] = None): |
|
""" |
|
Extracts the commit hash from a resolved filename toward a cache file. |
|
""" |
|
if resolved_file is None or commit_hash is not None: |
|
return commit_hash |
|
resolved_file = str(Path(resolved_file).as_posix()) |
|
search = re.search(r"snapshots/([^/]+)/", resolved_file) |
|
if search is None: |
|
return None |
|
commit_hash = search.groups()[0] |
|
return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None |
|
|
|
|
|
|
|
|
|
|
|
|
|
hf_cache_home = os.path.expanduser( |
|
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) |
|
) |
|
old_diffusers_cache = os.path.join(hf_cache_home, "diffusers") |
|
|
|
|
|
def move_cache(old_cache_dir: Optional[str] = None, new_cache_dir: Optional[str] = None) -> None: |
|
if new_cache_dir is None: |
|
new_cache_dir = HF_HUB_CACHE |
|
if old_cache_dir is None: |
|
old_cache_dir = old_diffusers_cache |
|
|
|
old_cache_dir = Path(old_cache_dir).expanduser() |
|
new_cache_dir = Path(new_cache_dir).expanduser() |
|
for old_blob_path in old_cache_dir.glob("**/blobs/*"): |
|
if old_blob_path.is_file() and not old_blob_path.is_symlink(): |
|
new_blob_path = new_cache_dir / old_blob_path.relative_to(old_cache_dir) |
|
new_blob_path.parent.mkdir(parents=True, exist_ok=True) |
|
os.replace(old_blob_path, new_blob_path) |
|
try: |
|
os.symlink(new_blob_path, old_blob_path) |
|
except OSError: |
|
logger.warning( |
|
"Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." |
|
) |
|
|
|
|
|
|
|
cache_version_file = os.path.join(HF_HUB_CACHE, "version_diffusers_cache.txt") |
|
if not os.path.isfile(cache_version_file): |
|
cache_version = 0 |
|
else: |
|
with open(cache_version_file) as f: |
|
try: |
|
cache_version = int(f.read()) |
|
except ValueError: |
|
cache_version = 0 |
|
|
|
if cache_version < 1: |
|
old_cache_is_not_empty = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 |
|
if old_cache_is_not_empty: |
|
logger.warning( |
|
"The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " |
|
"existing cached models. This is a one-time operation, you can interrupt it or run it " |
|
"later by calling `diffusers.utils.hub_utils.move_cache()`." |
|
) |
|
try: |
|
move_cache() |
|
except Exception as e: |
|
trace = "\n".join(traceback.format_tb(e.__traceback__)) |
|
logger.error( |
|
f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " |
|
"file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " |
|
"message and we will do our best to help." |
|
) |
|
|
|
if cache_version < 1: |
|
try: |
|
os.makedirs(HF_HUB_CACHE, exist_ok=True) |
|
with open(cache_version_file, "w") as f: |
|
f.write("1") |
|
except Exception: |
|
logger.warning( |
|
f"There was a problem when trying to write in your cache folder ({HF_HUB_CACHE}). Please, ensure " |
|
"the directory exists and can be written to." |
|
) |
|
|
|
|
|
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str: |
|
if variant is not None: |
|
splits = weights_name.split(".") |
|
splits = splits[:-1] + [variant] + splits[-1:] |
|
weights_name = ".".join(splits) |
|
|
|
return weights_name |
|
|
|
|
|
@validate_hf_hub_args |
|
def _get_model_file( |
|
pretrained_model_name_or_path: Union[str, Path], |
|
*, |
|
weights_name: str, |
|
subfolder: Optional[str] = None, |
|
cache_dir: Optional[str] = None, |
|
force_download: bool = False, |
|
proxies: Optional[Dict] = None, |
|
resume_download: Optional[bool] = None, |
|
local_files_only: bool = False, |
|
token: Optional[str] = None, |
|
user_agent: Optional[Union[Dict, str]] = None, |
|
revision: Optional[str] = None, |
|
commit_hash: Optional[str] = None, |
|
): |
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path) |
|
if os.path.isfile(pretrained_model_name_or_path): |
|
return pretrained_model_name_or_path |
|
elif os.path.isdir(pretrained_model_name_or_path): |
|
if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)): |
|
|
|
model_file = os.path.join(pretrained_model_name_or_path, weights_name) |
|
return model_file |
|
elif subfolder is not None and os.path.isfile( |
|
os.path.join(pretrained_model_name_or_path, subfolder, weights_name) |
|
): |
|
model_file = os.path.join(pretrained_model_name_or_path, subfolder, weights_name) |
|
return model_file |
|
else: |
|
raise EnvironmentError( |
|
f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." |
|
) |
|
else: |
|
|
|
if ( |
|
revision in DEPRECATED_REVISION_ARGS |
|
and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) |
|
and version.parse(version.parse(__version__).base_version) >= version.parse("0.22.0") |
|
): |
|
try: |
|
model_file = hf_hub_download( |
|
pretrained_model_name_or_path, |
|
filename=_add_variant(weights_name, revision), |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
user_agent=user_agent, |
|
subfolder=subfolder, |
|
revision=revision or commit_hash, |
|
) |
|
warnings.warn( |
|
f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.", |
|
FutureWarning, |
|
) |
|
return model_file |
|
except: |
|
warnings.warn( |
|
f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(weights_name, revision)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(weights_name, revision)}' so that the correct variant file can be added.", |
|
FutureWarning, |
|
) |
|
try: |
|
|
|
model_file = hf_hub_download( |
|
pretrained_model_name_or_path, |
|
filename=weights_name, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
user_agent=user_agent, |
|
subfolder=subfolder, |
|
revision=revision or commit_hash, |
|
) |
|
return model_file |
|
|
|
except RepositoryNotFoundError: |
|
raise EnvironmentError( |
|
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " |
|
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " |
|
"token having permission to this repo with `token` or log in with `huggingface-cli " |
|
"login`." |
|
) |
|
except RevisionNotFoundError: |
|
raise EnvironmentError( |
|
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " |
|
"this model name. Check the model page at " |
|
f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." |
|
) |
|
except EntryNotFoundError: |
|
raise EnvironmentError( |
|
f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." |
|
) |
|
except HTTPError as err: |
|
raise EnvironmentError( |
|
f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" |
|
) |
|
except ValueError: |
|
raise EnvironmentError( |
|
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" |
|
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" |
|
f" directory containing a file named {weights_name} or" |
|
" \nCheckout your internet connection or see how to run the library in" |
|
" offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." |
|
) |
|
except EnvironmentError: |
|
raise EnvironmentError( |
|
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " |
|
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. " |
|
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " |
|
f"containing a file named {weights_name}" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _check_if_shards_exist_locally(local_dir, subfolder, original_shard_filenames): |
|
shards_path = os.path.join(local_dir, subfolder) |
|
shard_filenames = [os.path.join(shards_path, f) for f in original_shard_filenames] |
|
for shard_file in shard_filenames: |
|
if not os.path.exists(shard_file): |
|
raise ValueError( |
|
f"{shards_path} does not appear to have a file named {shard_file} which is " |
|
"required according to the checkpoint index." |
|
) |
|
|
|
|
|
def _get_checkpoint_shard_files( |
|
pretrained_model_name_or_path, |
|
index_filename, |
|
cache_dir=None, |
|
proxies=None, |
|
resume_download=False, |
|
local_files_only=False, |
|
token=None, |
|
user_agent=None, |
|
revision=None, |
|
subfolder="", |
|
): |
|
""" |
|
For a given model: |
|
|
|
- download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the |
|
Hub |
|
- returns the list of paths to all the shards, as well as some metadata. |
|
|
|
For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the |
|
index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub). |
|
""" |
|
if not os.path.isfile(index_filename): |
|
raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.") |
|
|
|
with open(index_filename, "r") as f: |
|
index = json.loads(f.read()) |
|
|
|
original_shard_filenames = sorted(set(index["weight_map"].values())) |
|
sharded_metadata = index["metadata"] |
|
sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys()) |
|
sharded_metadata["weight_map"] = index["weight_map"].copy() |
|
shards_path = os.path.join(pretrained_model_name_or_path, subfolder) |
|
|
|
|
|
if os.path.isdir(pretrained_model_name_or_path): |
|
_check_if_shards_exist_locally( |
|
pretrained_model_name_or_path, subfolder=subfolder, original_shard_filenames=original_shard_filenames |
|
) |
|
return pretrained_model_name_or_path, sharded_metadata |
|
|
|
|
|
allow_patterns = original_shard_filenames |
|
ignore_patterns = ["*.json", "*.md"] |
|
if not local_files_only: |
|
|
|
model_files_info = model_info(pretrained_model_name_or_path) |
|
for shard_file in original_shard_filenames: |
|
shard_file_present = any(shard_file in k.rfilename for k in model_files_info.siblings) |
|
if not shard_file_present: |
|
raise EnvironmentError( |
|
f"{shards_path} does not appear to have a file named {shard_file} which is " |
|
"required according to the checkpoint index." |
|
) |
|
|
|
try: |
|
|
|
cached_folder = snapshot_download( |
|
pretrained_model_name_or_path, |
|
cache_dir=cache_dir, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
allow_patterns=allow_patterns, |
|
ignore_patterns=ignore_patterns, |
|
user_agent=user_agent, |
|
) |
|
|
|
|
|
|
|
except HTTPError as e: |
|
raise EnvironmentError( |
|
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {pretrained_model_name_or_path}. You should try" |
|
" again after checking your internet connection." |
|
) from e |
|
|
|
|
|
if local_files_only: |
|
_check_if_shards_exist_locally( |
|
local_dir=cache_dir, subfolder=subfolder, original_shard_filenames=original_shard_filenames |
|
) |
|
|
|
return cached_folder, sharded_metadata |
|
|
|
|
|
class PushToHubMixin: |
|
""" |
|
A Mixin to push a model, scheduler, or pipeline to the Hugging Face Hub. |
|
""" |
|
|
|
def _upload_folder( |
|
self, |
|
working_dir: Union[str, os.PathLike], |
|
repo_id: str, |
|
token: Optional[str] = None, |
|
commit_message: Optional[str] = None, |
|
create_pr: bool = False, |
|
): |
|
""" |
|
Uploads all files in `working_dir` to `repo_id`. |
|
""" |
|
if commit_message is None: |
|
if "Model" in self.__class__.__name__: |
|
commit_message = "Upload model" |
|
elif "Scheduler" in self.__class__.__name__: |
|
commit_message = "Upload scheduler" |
|
else: |
|
commit_message = f"Upload {self.__class__.__name__}" |
|
|
|
logger.info(f"Uploading the files of {working_dir} to {repo_id}.") |
|
return upload_folder( |
|
repo_id=repo_id, folder_path=working_dir, token=token, commit_message=commit_message, create_pr=create_pr |
|
) |
|
|
|
def push_to_hub( |
|
self, |
|
repo_id: str, |
|
commit_message: Optional[str] = None, |
|
private: Optional[bool] = None, |
|
token: Optional[str] = None, |
|
create_pr: bool = False, |
|
safe_serialization: bool = True, |
|
variant: Optional[str] = None, |
|
) -> str: |
|
""" |
|
Upload model, scheduler, or pipeline files to the 🤗 Hugging Face Hub. |
|
|
|
Parameters: |
|
repo_id (`str`): |
|
The name of the repository you want to push your model, scheduler, or pipeline files to. It should |
|
contain your organization name when pushing to an organization. `repo_id` can also be a path to a local |
|
directory. |
|
commit_message (`str`, *optional*): |
|
Message to commit while pushing. Default to `"Upload {object}"`. |
|
private (`bool`, *optional*): |
|
Whether or not the repository created should be private. |
|
token (`str`, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. The token generated when running |
|
`huggingface-cli login` (stored in `~/.huggingface`). |
|
create_pr (`bool`, *optional*, defaults to `False`): |
|
Whether or not to create a PR with the uploaded files or directly commit. |
|
safe_serialization (`bool`, *optional*, defaults to `True`): |
|
Whether or not to convert the model weights to the `safetensors` format. |
|
variant (`str`, *optional*): |
|
If specified, weights are saved in the format `pytorch_model.<variant>.bin`. |
|
|
|
Examples: |
|
|
|
```python |
|
from diffusers import UNet2DConditionModel |
|
|
|
unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="unet") |
|
|
|
# Push the `unet` to your namespace with the name "my-finetuned-unet". |
|
unet.push_to_hub("my-finetuned-unet") |
|
|
|
# Push the `unet` to an organization with the name "my-finetuned-unet". |
|
unet.push_to_hub("your-org/my-finetuned-unet") |
|
``` |
|
""" |
|
repo_id = create_repo(repo_id, private=private, token=token, exist_ok=True).repo_id |
|
|
|
|
|
model_card = load_or_create_model_card(repo_id, token=token) |
|
model_card = populate_model_card(model_card) |
|
|
|
|
|
save_kwargs = {"safe_serialization": safe_serialization} |
|
if "Scheduler" not in self.__class__.__name__: |
|
save_kwargs.update({"variant": variant}) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
self.save_pretrained(tmpdir, **save_kwargs) |
|
|
|
|
|
model_card.save(os.path.join(tmpdir, "README.md")) |
|
|
|
return self._upload_folder( |
|
tmpdir, |
|
repo_id, |
|
token=token, |
|
commit_message=commit_message, |
|
create_pr=create_pr, |
|
) |
|
|