svjack's picture
Upload 1392 files
43b7e92 verified
|
raw
history blame
2.47 kB

RePaintScheduler

RePaintScheduler is a DDPM-based inpainting scheduler for unsupervised inpainting with extreme masks. It is designed to be used with the [RePaintPipeline], and it is based on the paper RePaint: Inpainting using Denoising Diffusion Probabilistic Models by Andreas Lugmayr et al.

The abstract from the paper is:

Free-form inpainting is the task of adding new content to an image in the regions specified by an arbitrary binary mask. Most existing approaches train for a certain distribution of masks, which limits their generalization capabilities to unseen mask types. Furthermore, training with pixel-wise and perceptual losses often leads to simple textural extensions towards the missing areas instead of semantically meaningful generation. In this work, we propose RePaint: A Denoising Diffusion Probabilistic Model (DDPM) based inpainting approach that is applicable to even extreme masks. We employ a pretrained unconditional DDPM as the generative prior. To condition the generation process, we only alter the reverse diffusion iterations by sampling the unmasked regions using the given image information. Since this technique does not modify or condition the original DDPM network itself, the model produces high-quality and diverse output images for any inpainting form. We validate our method for both faces and general-purpose image inpainting using standard and extreme masks. RePaint outperforms state-of-the-art Autoregressive, and GAN approaches for at least five out of six mask distributions. GitHub Repository: this http URL.

The original implementation can be found at andreas128/RePaint.

RePaintScheduler

[[autodoc]] RePaintScheduler

RePaintSchedulerOutput

[[autodoc]] schedulers.scheduling_repaint.RePaintSchedulerOutput