|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from ...schedulers import DDPMWuerstchenScheduler |
|
from ...utils import deprecate, logging, replace_example_docstring |
|
from ...utils.torch_utils import randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
from .modeling_paella_vq_model import PaellaVQModel |
|
from .modeling_wuerstchen_diffnext import WuerstchenDiffNeXt |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import WuerstchenPriorPipeline, WuerstchenDecoderPipeline |
|
|
|
>>> prior_pipe = WuerstchenPriorPipeline.from_pretrained( |
|
... "warp-ai/wuerstchen-prior", torch_dtype=torch.float16 |
|
... ).to("cuda") |
|
>>> gen_pipe = WuerstchenDecoderPipeline.from_pretrain("warp-ai/wuerstchen", torch_dtype=torch.float16).to( |
|
... "cuda" |
|
... ) |
|
|
|
>>> prompt = "an image of a shiba inu, donning a spacesuit and helmet" |
|
>>> prior_output = pipe(prompt) |
|
>>> images = gen_pipe(prior_output.image_embeddings, prompt=prompt) |
|
``` |
|
""" |
|
|
|
|
|
class WuerstchenDecoderPipeline(DiffusionPipeline): |
|
""" |
|
Pipeline for generating images from the Wuerstchen model. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
tokenizer (`CLIPTokenizer`): |
|
The CLIP tokenizer. |
|
text_encoder (`CLIPTextModel`): |
|
The CLIP text encoder. |
|
decoder ([`WuerstchenDiffNeXt`]): |
|
The WuerstchenDiffNeXt unet decoder. |
|
vqgan ([`PaellaVQModel`]): |
|
The VQGAN model. |
|
scheduler ([`DDPMWuerstchenScheduler`]): |
|
A scheduler to be used in combination with `prior` to generate image embedding. |
|
latent_dim_scale (float, `optional`, defaults to 10.67): |
|
Multiplier to determine the VQ latent space size from the image embeddings. If the image embeddings are |
|
height=24 and width=24, the VQ latent shape needs to be height=int(24*10.67)=256 and |
|
width=int(24*10.67)=256 in order to match the training conditions. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->decoder->vqgan" |
|
_callback_tensor_inputs = [ |
|
"latents", |
|
"text_encoder_hidden_states", |
|
"negative_prompt_embeds", |
|
"image_embeddings", |
|
] |
|
|
|
def __init__( |
|
self, |
|
tokenizer: CLIPTokenizer, |
|
text_encoder: CLIPTextModel, |
|
decoder: WuerstchenDiffNeXt, |
|
scheduler: DDPMWuerstchenScheduler, |
|
vqgan: PaellaVQModel, |
|
latent_dim_scale: float = 10.67, |
|
) -> None: |
|
super().__init__() |
|
self.register_modules( |
|
tokenizer=tokenizer, |
|
text_encoder=text_encoder, |
|
decoder=decoder, |
|
scheduler=scheduler, |
|
vqgan=vqgan, |
|
) |
|
self.register_to_config(latent_dim_scale=latent_dim_scale) |
|
|
|
|
|
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): |
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
latents = latents.to(device) |
|
|
|
latents = latents * scheduler.init_noise_sigma |
|
return latents |
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
): |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
attention_mask = text_inputs.attention_mask |
|
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] |
|
attention_mask = attention_mask[:, : self.tokenizer.model_max_length] |
|
|
|
text_encoder_output = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask.to(device)) |
|
text_encoder_hidden_states = text_encoder_output.last_hidden_state |
|
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
uncond_text_encoder_hidden_states = None |
|
if do_classifier_free_guidance: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
negative_prompt_embeds_text_encoder_output = self.text_encoder( |
|
uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device) |
|
) |
|
|
|
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state |
|
|
|
|
|
seq_len = uncond_text_encoder_hidden_states.shape[1] |
|
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) |
|
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( |
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
) |
|
|
|
|
|
|
|
|
|
|
|
return text_encoder_hidden_states, uncond_text_encoder_hidden_states |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
image_embeddings: Union[torch.Tensor, List[torch.Tensor]], |
|
prompt: Union[str, List[str]] = None, |
|
num_inference_steps: int = 12, |
|
timesteps: Optional[List[float]] = None, |
|
guidance_scale: float = 0.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: int = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
image_embedding (`torch.Tensor` or `List[torch.Tensor]`): |
|
Image Embeddings either extracted from an image or generated by a Prior Model. |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
num_inference_steps (`int`, *optional*, defaults to 12): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` |
|
timesteps are used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 0.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting |
|
`decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely |
|
linked to the text `prompt`, usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `decoder_guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` |
|
(`np.array`) or `"pt"` (`torch.Tensor`). |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True, |
|
otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image |
|
embeddings. |
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
|
|
device = self._execution_device |
|
dtype = self.decoder.dtype |
|
self._guidance_scale = guidance_scale |
|
|
|
|
|
if not isinstance(prompt, list): |
|
if isinstance(prompt, str): |
|
prompt = [prompt] |
|
else: |
|
raise TypeError(f"'prompt' must be of type 'list' or 'str', but got {type(prompt)}.") |
|
|
|
if self.do_classifier_free_guidance: |
|
if negative_prompt is not None and not isinstance(negative_prompt, list): |
|
if isinstance(negative_prompt, str): |
|
negative_prompt = [negative_prompt] |
|
else: |
|
raise TypeError( |
|
f"'negative_prompt' must be of type 'list' or 'str', but got {type(negative_prompt)}." |
|
) |
|
|
|
if isinstance(image_embeddings, list): |
|
image_embeddings = torch.cat(image_embeddings, dim=0) |
|
if isinstance(image_embeddings, np.ndarray): |
|
image_embeddings = torch.Tensor(image_embeddings, device=device).to(dtype=dtype) |
|
if not isinstance(image_embeddings, torch.Tensor): |
|
raise TypeError( |
|
f"'image_embeddings' must be of type 'torch.Tensor' or 'np.array', but got {type(image_embeddings)}." |
|
) |
|
|
|
if not isinstance(num_inference_steps, int): |
|
raise TypeError( |
|
f"'num_inference_steps' must be of type 'int', but got {type(num_inference_steps)}\ |
|
In Case you want to provide explicit timesteps, please use the 'timesteps' argument." |
|
) |
|
|
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
image_embeddings.size(0) * num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
negative_prompt, |
|
) |
|
text_encoder_hidden_states = ( |
|
torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds |
|
) |
|
effnet = ( |
|
torch.cat([image_embeddings, torch.zeros_like(image_embeddings)]) |
|
if self.do_classifier_free_guidance |
|
else image_embeddings |
|
) |
|
|
|
|
|
latent_height = int(image_embeddings.size(2) * self.config.latent_dim_scale) |
|
latent_width = int(image_embeddings.size(3) * self.config.latent_dim_scale) |
|
latent_features_shape = (image_embeddings.size(0) * num_images_per_prompt, 4, latent_height, latent_width) |
|
|
|
|
|
if timesteps is not None: |
|
self.scheduler.set_timesteps(timesteps=timesteps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
latents = self.prepare_latents(latent_features_shape, dtype, device, generator, latents, self.scheduler) |
|
|
|
|
|
self._num_timesteps = len(timesteps[:-1]) |
|
for i, t in enumerate(self.progress_bar(timesteps[:-1])): |
|
ratio = t.expand(latents.size(0)).to(dtype) |
|
|
|
predicted_latents = self.decoder( |
|
torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, |
|
r=torch.cat([ratio] * 2) if self.do_classifier_free_guidance else ratio, |
|
effnet=effnet, |
|
clip=text_encoder_hidden_states, |
|
) |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
predicted_latents_text, predicted_latents_uncond = predicted_latents.chunk(2) |
|
predicted_latents = torch.lerp(predicted_latents_uncond, predicted_latents_text, self.guidance_scale) |
|
|
|
|
|
latents = self.scheduler.step( |
|
model_output=predicted_latents, |
|
timestep=ratio, |
|
sample=latents, |
|
generator=generator, |
|
).prev_sample |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
image_embeddings = callback_outputs.pop("image_embeddings", image_embeddings) |
|
text_encoder_hidden_states = callback_outputs.pop( |
|
"text_encoder_hidden_states", text_encoder_hidden_states |
|
) |
|
|
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if output_type not in ["pt", "np", "pil", "latent"]: |
|
raise ValueError( |
|
f"Only the output types `pt`, `np`, `pil` and `latent` are supported not output_type={output_type}" |
|
) |
|
|
|
if not output_type == "latent": |
|
|
|
latents = self.vqgan.config.scale_factor * latents |
|
images = self.vqgan.decode(latents).sample.clamp(0, 1) |
|
if output_type == "np": |
|
images = images.permute(0, 2, 3, 1).cpu().float().numpy() |
|
elif output_type == "pil": |
|
images = images.permute(0, 2, 3, 1).cpu().float().numpy() |
|
images = self.numpy_to_pil(images) |
|
else: |
|
images = latents |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return images |
|
return ImagePipelineOutput(images) |
|
|