|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, Dict, List, Optional, Union |
|
|
|
import torch |
|
|
|
from ...models import UNet2DConditionModel, VQModel |
|
from ...schedulers import DDPMScheduler |
|
from ...utils import deprecate, logging, replace_example_docstring |
|
from ...utils.torch_utils import randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline |
|
>>> import torch |
|
|
|
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") |
|
>>> pipe_prior.to("cuda") |
|
>>> prompt = "red cat, 4k photo" |
|
>>> out = pipe_prior(prompt) |
|
>>> image_emb = out.image_embeds |
|
>>> zero_image_emb = out.negative_image_embeds |
|
>>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") |
|
>>> pipe.to("cuda") |
|
>>> image = pipe( |
|
... image_embeds=image_emb, |
|
... negative_image_embeds=zero_image_emb, |
|
... height=768, |
|
... width=768, |
|
... num_inference_steps=50, |
|
... ).images |
|
>>> image[0].save("cat.png") |
|
``` |
|
""" |
|
|
|
|
|
def downscale_height_and_width(height, width, scale_factor=8): |
|
new_height = height // scale_factor**2 |
|
if height % scale_factor**2 != 0: |
|
new_height += 1 |
|
new_width = width // scale_factor**2 |
|
if width % scale_factor**2 != 0: |
|
new_width += 1 |
|
return new_height * scale_factor, new_width * scale_factor |
|
|
|
|
|
class KandinskyV22Pipeline(DiffusionPipeline): |
|
""" |
|
Pipeline for text-to-image generation using Kandinsky |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
scheduler (Union[`DDIMScheduler`,`DDPMScheduler`]): |
|
A scheduler to be used in combination with `unet` to generate image latents. |
|
unet ([`UNet2DConditionModel`]): |
|
Conditional U-Net architecture to denoise the image embedding. |
|
movq ([`VQModel`]): |
|
MoVQ Decoder to generate the image from the latents. |
|
""" |
|
|
|
model_cpu_offload_seq = "unet->movq" |
|
_callback_tensor_inputs = ["latents", "image_embeds", "negative_image_embeds"] |
|
|
|
def __init__( |
|
self, |
|
unet: UNet2DConditionModel, |
|
scheduler: DDPMScheduler, |
|
movq: VQModel, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
unet=unet, |
|
scheduler=scheduler, |
|
movq=movq, |
|
) |
|
self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) |
|
|
|
|
|
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): |
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
latents = latents.to(device) |
|
|
|
latents = latents * scheduler.init_noise_sigma |
|
return latents |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
image_embeds: Union[torch.Tensor, List[torch.Tensor]], |
|
negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]], |
|
height: int = 512, |
|
width: int = 512, |
|
num_inference_steps: int = 100, |
|
guidance_scale: float = 4.0, |
|
num_images_per_prompt: int = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
image_embeds (`torch.Tensor` or `List[torch.Tensor]`): |
|
The clip image embeddings for text prompt, that will be used to condition the image generation. |
|
negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`): |
|
The clip image embeddings for negative text prompt, will be used to condition the image generation. |
|
height (`int`, *optional*, defaults to 512): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to 512): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 100): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 4.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` |
|
(`np.array`) or `"pt"` (`torch.Tensor`). |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple` |
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
device = self._execution_device |
|
|
|
self._guidance_scale = guidance_scale |
|
|
|
if isinstance(image_embeds, list): |
|
image_embeds = torch.cat(image_embeds, dim=0) |
|
batch_size = image_embeds.shape[0] * num_images_per_prompt |
|
if isinstance(negative_image_embeds, list): |
|
negative_image_embeds = torch.cat(negative_image_embeds, dim=0) |
|
|
|
if self.do_classifier_free_guidance: |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to( |
|
dtype=self.unet.dtype, device=device |
|
) |
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
|
|
height, width = downscale_height_and_width(height, width, self.movq_scale_factor) |
|
|
|
|
|
latents = self.prepare_latents( |
|
(batch_size, num_channels_latents, height, width), |
|
image_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
self.scheduler, |
|
) |
|
|
|
self._num_timesteps = len(timesteps) |
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
|
|
added_cond_kwargs = {"image_embeds": image_embeds} |
|
noise_pred = self.unet( |
|
sample=latent_model_input, |
|
timestep=t, |
|
encoder_hidden_states=None, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1) |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
_, variance_pred_text = variance_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) |
|
|
|
if not ( |
|
hasattr(self.scheduler.config, "variance_type") |
|
and self.scheduler.config.variance_type in ["learned", "learned_range"] |
|
): |
|
noise_pred, _ = noise_pred.split(latents.shape[1], dim=1) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, |
|
t, |
|
latents, |
|
generator=generator, |
|
)[0] |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
image_embeds = callback_outputs.pop("image_embeds", image_embeds) |
|
negative_image_embeds = callback_outputs.pop("negative_image_embeds", negative_image_embeds) |
|
|
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if output_type not in ["pt", "np", "pil", "latent"]: |
|
raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") |
|
|
|
if not output_type == "latent": |
|
|
|
image = self.movq.decode(latents, force_not_quantize=True)["sample"] |
|
if output_type in ["np", "pil"]: |
|
image = image * 0.5 + 0.5 |
|
image = image.clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
else: |
|
image = latents |
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|