|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from parameterized import parameterized |
|
|
|
from diffusers import ( |
|
AsymmetricAutoencoderKL, |
|
AutoencoderKL, |
|
AutoencoderKLTemporalDecoder, |
|
AutoencoderTiny, |
|
ConsistencyDecoderVAE, |
|
StableDiffusionPipeline, |
|
) |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.loading_utils import load_image |
|
from diffusers.utils.testing_utils import ( |
|
backend_empty_cache, |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_hf_numpy, |
|
require_torch_accelerator, |
|
require_torch_accelerator_with_fp16, |
|
require_torch_accelerator_with_training, |
|
require_torch_gpu, |
|
skip_mps, |
|
slow, |
|
torch_all_close, |
|
torch_device, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
def get_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None): |
|
block_out_channels = block_out_channels or [2, 4] |
|
norm_num_groups = norm_num_groups or 2 |
|
init_dict = { |
|
"block_out_channels": block_out_channels, |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels), |
|
"up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels), |
|
"latent_channels": 4, |
|
"norm_num_groups": norm_num_groups, |
|
} |
|
return init_dict |
|
|
|
|
|
def get_asym_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None): |
|
block_out_channels = block_out_channels or [2, 4] |
|
norm_num_groups = norm_num_groups or 2 |
|
init_dict = { |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels), |
|
"down_block_out_channels": block_out_channels, |
|
"layers_per_down_block": 1, |
|
"up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels), |
|
"up_block_out_channels": block_out_channels, |
|
"layers_per_up_block": 1, |
|
"act_fn": "silu", |
|
"latent_channels": 4, |
|
"norm_num_groups": norm_num_groups, |
|
"sample_size": 32, |
|
"scaling_factor": 0.18215, |
|
} |
|
return init_dict |
|
|
|
|
|
def get_autoencoder_tiny_config(block_out_channels=None): |
|
block_out_channels = (len(block_out_channels) * [32]) if block_out_channels is not None else [32, 32] |
|
init_dict = { |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"encoder_block_out_channels": block_out_channels, |
|
"decoder_block_out_channels": block_out_channels, |
|
"num_encoder_blocks": [b // min(block_out_channels) for b in block_out_channels], |
|
"num_decoder_blocks": [b // min(block_out_channels) for b in reversed(block_out_channels)], |
|
} |
|
return init_dict |
|
|
|
|
|
def get_consistency_vae_config(block_out_channels=None, norm_num_groups=None): |
|
block_out_channels = block_out_channels or [2, 4] |
|
norm_num_groups = norm_num_groups or 2 |
|
return { |
|
"encoder_block_out_channels": block_out_channels, |
|
"encoder_in_channels": 3, |
|
"encoder_out_channels": 4, |
|
"encoder_down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels), |
|
"decoder_add_attention": False, |
|
"decoder_block_out_channels": block_out_channels, |
|
"decoder_down_block_types": ["ResnetDownsampleBlock2D"] * len(block_out_channels), |
|
"decoder_downsample_padding": 1, |
|
"decoder_in_channels": 7, |
|
"decoder_layers_per_block": 1, |
|
"decoder_norm_eps": 1e-05, |
|
"decoder_norm_num_groups": norm_num_groups, |
|
"encoder_norm_num_groups": norm_num_groups, |
|
"decoder_num_train_timesteps": 1024, |
|
"decoder_out_channels": 6, |
|
"decoder_resnet_time_scale_shift": "scale_shift", |
|
"decoder_time_embedding_type": "learned", |
|
"decoder_up_block_types": ["ResnetUpsampleBlock2D"] * len(block_out_channels), |
|
"scaling_factor": 1, |
|
"latent_channels": 4, |
|
} |
|
|
|
|
|
class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
model_class = AutoencoderKL |
|
main_input_name = "sample" |
|
base_precision = 1e-2 |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) |
|
|
|
return {"sample": image} |
|
|
|
@property |
|
def input_shape(self): |
|
return (3, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (3, 32, 32) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = get_autoencoder_kl_config() |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def test_forward_signature(self): |
|
pass |
|
|
|
def test_training(self): |
|
pass |
|
|
|
@require_torch_accelerator_with_training |
|
def test_gradient_checkpointing(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
assert not model.is_gradient_checkpointing and model.training |
|
|
|
out = model(**inputs_dict).sample |
|
|
|
|
|
model.zero_grad() |
|
|
|
labels = torch.randn_like(out) |
|
loss = (out - labels).mean() |
|
loss.backward() |
|
|
|
|
|
model_2 = self.model_class(**init_dict) |
|
|
|
model_2.load_state_dict(model.state_dict()) |
|
model_2.to(torch_device) |
|
model_2.enable_gradient_checkpointing() |
|
|
|
assert model_2.is_gradient_checkpointing and model_2.training |
|
|
|
out_2 = model_2(**inputs_dict).sample |
|
|
|
|
|
model_2.zero_grad() |
|
loss_2 = (out_2 - labels).mean() |
|
loss_2.backward() |
|
|
|
|
|
self.assertTrue((loss - loss_2).abs() < 1e-5) |
|
named_params = dict(model.named_parameters()) |
|
named_params_2 = dict(model_2.named_parameters()) |
|
for name, param in named_params.items(): |
|
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) |
|
|
|
def test_from_pretrained_hub(self): |
|
model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertEqual(len(loading_info["missing_keys"]), 0) |
|
|
|
model.to(torch_device) |
|
image = model(**self.dummy_input) |
|
|
|
assert image is not None, "Make sure output is not None" |
|
|
|
def test_output_pretrained(self): |
|
model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy") |
|
model = model.to(torch_device) |
|
model.eval() |
|
|
|
|
|
generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" |
|
if torch_device != "mps": |
|
generator = torch.Generator(device=generator_device).manual_seed(0) |
|
else: |
|
generator = torch.manual_seed(0) |
|
|
|
image = torch.randn( |
|
1, |
|
model.config.in_channels, |
|
model.config.sample_size, |
|
model.config.sample_size, |
|
generator=torch.manual_seed(0), |
|
) |
|
image = image.to(torch_device) |
|
with torch.no_grad(): |
|
output = model(image, sample_posterior=True, generator=generator).sample |
|
|
|
output_slice = output[0, -1, -3:, -3:].flatten().cpu() |
|
|
|
|
|
|
|
if torch_device == "mps": |
|
expected_output_slice = torch.tensor( |
|
[ |
|
-4.0078e-01, |
|
-3.8323e-04, |
|
-1.2681e-01, |
|
-1.1462e-01, |
|
2.0095e-01, |
|
1.0893e-01, |
|
-8.8247e-02, |
|
-3.0361e-01, |
|
-9.8644e-03, |
|
] |
|
) |
|
elif generator_device == "cpu": |
|
expected_output_slice = torch.tensor( |
|
[ |
|
-0.1352, |
|
0.0878, |
|
0.0419, |
|
-0.0818, |
|
-0.1069, |
|
0.0688, |
|
-0.1458, |
|
-0.4446, |
|
-0.0026, |
|
] |
|
) |
|
else: |
|
expected_output_slice = torch.tensor( |
|
[ |
|
-0.2421, |
|
0.4642, |
|
0.2507, |
|
-0.0438, |
|
0.0682, |
|
0.3160, |
|
-0.2018, |
|
-0.0727, |
|
0.2485, |
|
] |
|
) |
|
|
|
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) |
|
|
|
|
|
class AsymmetricAutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
model_class = AsymmetricAutoencoderKL |
|
main_input_name = "sample" |
|
base_precision = 1e-2 |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) |
|
mask = torch.ones((batch_size, 1) + sizes).to(torch_device) |
|
|
|
return {"sample": image, "mask": mask} |
|
|
|
@property |
|
def input_shape(self): |
|
return (3, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (3, 32, 32) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = get_asym_autoencoder_kl_config() |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def test_forward_signature(self): |
|
pass |
|
|
|
def test_forward_with_norm_groups(self): |
|
pass |
|
|
|
|
|
class AutoencoderTinyTests(ModelTesterMixin, unittest.TestCase): |
|
model_class = AutoencoderTiny |
|
main_input_name = "sample" |
|
base_precision = 1e-2 |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) |
|
|
|
return {"sample": image} |
|
|
|
@property |
|
def input_shape(self): |
|
return (3, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (3, 32, 32) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = get_autoencoder_tiny_config() |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def test_outputs_equivalence(self): |
|
pass |
|
|
|
|
|
class ConsistencyDecoderVAETests(ModelTesterMixin, unittest.TestCase): |
|
model_class = ConsistencyDecoderVAE |
|
main_input_name = "sample" |
|
base_precision = 1e-2 |
|
forward_requires_fresh_args = True |
|
|
|
def inputs_dict(self, seed=None): |
|
generator = torch.Generator("cpu") |
|
if seed is not None: |
|
generator.manual_seed(0) |
|
image = randn_tensor((4, 3, 32, 32), generator=generator, device=torch.device(torch_device)) |
|
|
|
return {"sample": image, "generator": generator} |
|
|
|
@property |
|
def input_shape(self): |
|
return (3, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (3, 32, 32) |
|
|
|
@property |
|
def init_dict(self): |
|
return get_consistency_vae_config() |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
return self.init_dict, self.inputs_dict() |
|
|
|
@unittest.skip |
|
def test_training(self): |
|
... |
|
|
|
@unittest.skip |
|
def test_ema_training(self): |
|
... |
|
|
|
|
|
class AutoencoderKLTemporalDecoderFastTests(ModelTesterMixin, unittest.TestCase): |
|
model_class = AutoencoderKLTemporalDecoder |
|
main_input_name = "sample" |
|
base_precision = 1e-2 |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 3 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) |
|
num_frames = 3 |
|
|
|
return {"sample": image, "num_frames": num_frames} |
|
|
|
@property |
|
def input_shape(self): |
|
return (3, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (3, 32, 32) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"block_out_channels": [32, 64], |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
"latent_channels": 4, |
|
"layers_per_block": 2, |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def test_forward_signature(self): |
|
pass |
|
|
|
def test_training(self): |
|
pass |
|
|
|
@unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS") |
|
def test_gradient_checkpointing(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
assert not model.is_gradient_checkpointing and model.training |
|
|
|
out = model(**inputs_dict).sample |
|
|
|
|
|
model.zero_grad() |
|
|
|
labels = torch.randn_like(out) |
|
loss = (out - labels).mean() |
|
loss.backward() |
|
|
|
|
|
model_2 = self.model_class(**init_dict) |
|
|
|
model_2.load_state_dict(model.state_dict()) |
|
model_2.to(torch_device) |
|
model_2.enable_gradient_checkpointing() |
|
|
|
assert model_2.is_gradient_checkpointing and model_2.training |
|
|
|
out_2 = model_2(**inputs_dict).sample |
|
|
|
|
|
model_2.zero_grad() |
|
loss_2 = (out_2 - labels).mean() |
|
loss_2.backward() |
|
|
|
|
|
self.assertTrue((loss - loss_2).abs() < 1e-5) |
|
named_params = dict(model.named_parameters()) |
|
named_params_2 = dict(model_2.named_parameters()) |
|
for name, param in named_params.items(): |
|
if "post_quant_conv" in name: |
|
continue |
|
|
|
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) |
|
|
|
|
|
@slow |
|
class AutoencoderTinyIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
backend_empty_cache(torch_device) |
|
|
|
def get_file_format(self, seed, shape): |
|
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" |
|
|
|
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): |
|
dtype = torch.float16 if fp16 else torch.float32 |
|
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) |
|
return image |
|
|
|
def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False): |
|
torch_dtype = torch.float16 if fp16 else torch.float32 |
|
|
|
model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype) |
|
model.to(torch_device).eval() |
|
return model |
|
|
|
@parameterized.expand( |
|
[ |
|
[(1, 4, 73, 97), (1, 3, 584, 776)], |
|
[(1, 4, 97, 73), (1, 3, 776, 584)], |
|
[(1, 4, 49, 65), (1, 3, 392, 520)], |
|
[(1, 4, 65, 49), (1, 3, 520, 392)], |
|
[(1, 4, 49, 49), (1, 3, 392, 392)], |
|
] |
|
) |
|
def test_tae_tiling(self, in_shape, out_shape): |
|
model = self.get_sd_vae_model() |
|
model.enable_tiling() |
|
with torch.no_grad(): |
|
zeros = torch.zeros(in_shape).to(torch_device) |
|
dec = model.decode(zeros).sample |
|
assert dec.shape == out_shape |
|
|
|
def test_stable_diffusion(self): |
|
model = self.get_sd_vae_model() |
|
image = self.get_sd_image(seed=33) |
|
|
|
with torch.no_grad(): |
|
sample = model(image).sample |
|
|
|
assert sample.shape == image.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor([0.0093, 0.6385, -0.1274, 0.1631, -0.1762, 0.5232, -0.3108, -0.0382]) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) |
|
|
|
@parameterized.expand([(True,), (False,)]) |
|
def test_tae_roundtrip(self, enable_tiling): |
|
|
|
model = self.get_sd_vae_model() |
|
if enable_tiling: |
|
model.enable_tiling() |
|
|
|
|
|
|
|
image = -torch.ones(1, 3, 1024, 1024, device=torch_device) |
|
image[..., 256:768, 256:768] = 1.0 |
|
|
|
|
|
with torch.no_grad(): |
|
sample = model(image).sample |
|
|
|
|
|
def downscale(x): |
|
return torch.nn.functional.avg_pool2d(x, model.spatial_scale_factor) |
|
|
|
assert torch_all_close(downscale(sample), downscale(image), atol=0.125) |
|
|
|
|
|
@slow |
|
class AutoencoderKLIntegrationTests(unittest.TestCase): |
|
def get_file_format(self, seed, shape): |
|
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
backend_empty_cache(torch_device) |
|
|
|
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): |
|
dtype = torch.float16 if fp16 else torch.float32 |
|
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) |
|
return image |
|
|
|
def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False): |
|
revision = "fp16" if fp16 else None |
|
torch_dtype = torch.float16 if fp16 else torch.float32 |
|
|
|
model = AutoencoderKL.from_pretrained( |
|
model_id, |
|
subfolder="vae", |
|
torch_dtype=torch_dtype, |
|
revision=revision, |
|
) |
|
model.to(torch_device) |
|
|
|
return model |
|
|
|
def get_generator(self, seed=0): |
|
generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" |
|
if torch_device != "mps": |
|
return torch.Generator(device=generator_device).manual_seed(seed) |
|
return torch.manual_seed(seed) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[ |
|
33, |
|
[-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], |
|
[-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824], |
|
], |
|
[ |
|
47, |
|
[-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], |
|
[0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131], |
|
], |
|
|
|
] |
|
) |
|
def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps): |
|
model = self.get_sd_vae_model() |
|
image = self.get_sd_image(seed) |
|
generator = self.get_generator(seed) |
|
|
|
with torch.no_grad(): |
|
sample = model(image, generator=generator, sample_posterior=True).sample |
|
|
|
assert sample.shape == image.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], |
|
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], |
|
|
|
] |
|
) |
|
@require_torch_accelerator_with_fp16 |
|
def test_stable_diffusion_fp16(self, seed, expected_slice): |
|
model = self.get_sd_vae_model(fp16=True) |
|
image = self.get_sd_image(seed, fp16=True) |
|
generator = self.get_generator(seed) |
|
|
|
with torch.no_grad(): |
|
sample = model(image, generator=generator, sample_posterior=True).sample |
|
|
|
assert sample.shape == image.shape |
|
|
|
output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-2) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[ |
|
33, |
|
[-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], |
|
[-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824], |
|
], |
|
[ |
|
47, |
|
[-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], |
|
[0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131], |
|
], |
|
|
|
] |
|
) |
|
def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps): |
|
model = self.get_sd_vae_model() |
|
image = self.get_sd_image(seed) |
|
|
|
with torch.no_grad(): |
|
sample = model(image).sample |
|
|
|
assert sample.shape == image.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], |
|
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], |
|
|
|
] |
|
) |
|
@require_torch_accelerator |
|
@skip_mps |
|
def test_stable_diffusion_decode(self, seed, expected_slice): |
|
model = self.get_sd_vae_model() |
|
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) |
|
|
|
with torch.no_grad(): |
|
sample = model.decode(encoding).sample |
|
|
|
assert list(sample.shape) == [3, 3, 512, 512] |
|
|
|
output_slice = sample[-1, -2:, :2, -2:].flatten().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], |
|
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], |
|
|
|
] |
|
) |
|
@require_torch_accelerator_with_fp16 |
|
def test_stable_diffusion_decode_fp16(self, seed, expected_slice): |
|
model = self.get_sd_vae_model(fp16=True) |
|
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True) |
|
|
|
with torch.no_grad(): |
|
sample = model.decode(encoding).sample |
|
|
|
assert list(sample.shape) == [3, 3, 512, 512] |
|
|
|
output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) |
|
|
|
@parameterized.expand([(13,), (16,), (27,)]) |
|
@require_torch_gpu |
|
@unittest.skipIf( |
|
not is_xformers_available(), |
|
reason="xformers is not required when using PyTorch 2.0.", |
|
) |
|
def test_stable_diffusion_decode_xformers_vs_2_0_fp16(self, seed): |
|
model = self.get_sd_vae_model(fp16=True) |
|
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True) |
|
|
|
with torch.no_grad(): |
|
sample = model.decode(encoding).sample |
|
|
|
model.enable_xformers_memory_efficient_attention() |
|
with torch.no_grad(): |
|
sample_2 = model.decode(encoding).sample |
|
|
|
assert list(sample.shape) == [3, 3, 512, 512] |
|
|
|
assert torch_all_close(sample, sample_2, atol=1e-1) |
|
|
|
@parameterized.expand([(13,), (16,), (37,)]) |
|
@require_torch_gpu |
|
@unittest.skipIf( |
|
not is_xformers_available(), |
|
reason="xformers is not required when using PyTorch 2.0.", |
|
) |
|
def test_stable_diffusion_decode_xformers_vs_2_0(self, seed): |
|
model = self.get_sd_vae_model() |
|
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) |
|
|
|
with torch.no_grad(): |
|
sample = model.decode(encoding).sample |
|
|
|
model.enable_xformers_memory_efficient_attention() |
|
with torch.no_grad(): |
|
sample_2 = model.decode(encoding).sample |
|
|
|
assert list(sample.shape) == [3, 3, 512, 512] |
|
|
|
assert torch_all_close(sample, sample_2, atol=1e-2) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], |
|
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], |
|
|
|
] |
|
) |
|
def test_stable_diffusion_encode_sample(self, seed, expected_slice): |
|
model = self.get_sd_vae_model() |
|
image = self.get_sd_image(seed) |
|
generator = self.get_generator(seed) |
|
|
|
with torch.no_grad(): |
|
dist = model.encode(image).latent_dist |
|
sample = dist.sample(generator=generator) |
|
|
|
assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] |
|
|
|
output_slice = sample[0, -1, -3:, -3:].flatten().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
tolerance = 3e-3 if torch_device != "mps" else 1e-2 |
|
assert torch_all_close(output_slice, expected_output_slice, atol=tolerance) |
|
|
|
|
|
@slow |
|
class AsymmetricAutoencoderKLIntegrationTests(unittest.TestCase): |
|
def get_file_format(self, seed, shape): |
|
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
backend_empty_cache(torch_device) |
|
|
|
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): |
|
dtype = torch.float16 if fp16 else torch.float32 |
|
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) |
|
return image |
|
|
|
def get_sd_vae_model(self, model_id="cross-attention/asymmetric-autoencoder-kl-x-1-5", fp16=False): |
|
revision = "main" |
|
torch_dtype = torch.float32 |
|
|
|
model = AsymmetricAutoencoderKL.from_pretrained( |
|
model_id, |
|
torch_dtype=torch_dtype, |
|
revision=revision, |
|
) |
|
model.to(torch_device).eval() |
|
|
|
return model |
|
|
|
def get_generator(self, seed=0): |
|
generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" |
|
if torch_device != "mps": |
|
return torch.Generator(device=generator_device).manual_seed(seed) |
|
return torch.manual_seed(seed) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[ |
|
33, |
|
[-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078], |
|
[-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], |
|
], |
|
[ |
|
47, |
|
[0.4400, 0.0543, 0.2873, 0.2946, 0.0553, 0.0839, -0.1585, 0.2529], |
|
[-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], |
|
], |
|
|
|
] |
|
) |
|
def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps): |
|
model = self.get_sd_vae_model() |
|
image = self.get_sd_image(seed) |
|
generator = self.get_generator(seed) |
|
|
|
with torch.no_grad(): |
|
sample = model(image, generator=generator, sample_posterior=True).sample |
|
|
|
assert sample.shape == image.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[ |
|
33, |
|
[-0.0340, 0.2870, 0.1698, -0.0105, -0.3448, 0.3529, -0.1321, 0.1097], |
|
[-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078], |
|
], |
|
[ |
|
47, |
|
[0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531], |
|
[0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531], |
|
], |
|
|
|
] |
|
) |
|
def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps): |
|
model = self.get_sd_vae_model() |
|
image = self.get_sd_image(seed) |
|
|
|
with torch.no_grad(): |
|
sample = model(image).sample |
|
|
|
assert sample.shape == image.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[13, [-0.0521, -0.2939, 0.1540, -0.1855, -0.5936, -0.3138, -0.4579, -0.2275]], |
|
[37, [-0.1820, -0.4345, -0.0455, -0.2923, -0.8035, -0.5089, -0.4795, -0.3106]], |
|
|
|
] |
|
) |
|
@require_torch_accelerator |
|
@skip_mps |
|
def test_stable_diffusion_decode(self, seed, expected_slice): |
|
model = self.get_sd_vae_model() |
|
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) |
|
|
|
with torch.no_grad(): |
|
sample = model.decode(encoding).sample |
|
|
|
assert list(sample.shape) == [3, 3, 512, 512] |
|
|
|
output_slice = sample[-1, -2:, :2, -2:].flatten().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=2e-3) |
|
|
|
@parameterized.expand([(13,), (16,), (37,)]) |
|
@require_torch_gpu |
|
@unittest.skipIf( |
|
not is_xformers_available(), |
|
reason="xformers is not required when using PyTorch 2.0.", |
|
) |
|
def test_stable_diffusion_decode_xformers_vs_2_0(self, seed): |
|
model = self.get_sd_vae_model() |
|
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) |
|
|
|
with torch.no_grad(): |
|
sample = model.decode(encoding).sample |
|
|
|
model.enable_xformers_memory_efficient_attention() |
|
with torch.no_grad(): |
|
sample_2 = model.decode(encoding).sample |
|
|
|
assert list(sample.shape) == [3, 3, 512, 512] |
|
|
|
assert torch_all_close(sample, sample_2, atol=5e-2) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], |
|
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], |
|
|
|
] |
|
) |
|
def test_stable_diffusion_encode_sample(self, seed, expected_slice): |
|
model = self.get_sd_vae_model() |
|
image = self.get_sd_image(seed) |
|
generator = self.get_generator(seed) |
|
|
|
with torch.no_grad(): |
|
dist = model.encode(image).latent_dist |
|
sample = dist.sample(generator=generator) |
|
|
|
assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] |
|
|
|
output_slice = sample[0, -1, -3:, -3:].flatten().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
tolerance = 3e-3 if torch_device != "mps" else 1e-2 |
|
assert torch_all_close(output_slice, expected_output_slice, atol=tolerance) |
|
|
|
|
|
@slow |
|
class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@torch.no_grad() |
|
def test_encode_decode(self): |
|
vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") |
|
vae.to(torch_device) |
|
|
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/img2img/sketch-mountains-input.jpg" |
|
).resize((256, 256)) |
|
image = torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[ |
|
None, :, :, : |
|
].cuda() |
|
|
|
latent = vae.encode(image).latent_dist.mean |
|
|
|
sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample |
|
|
|
actual_output = sample[0, :2, :2, :2].flatten().cpu() |
|
expected_output = torch.tensor([-0.0141, -0.0014, 0.0115, 0.0086, 0.1051, 0.1053, 0.1031, 0.1024]) |
|
|
|
assert torch_all_close(actual_output, expected_output, atol=5e-3) |
|
|
|
def test_sd(self): |
|
vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") |
|
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", vae=vae, safety_checker=None) |
|
pipe.to(torch_device) |
|
|
|
out = pipe( |
|
"horse", |
|
num_inference_steps=2, |
|
output_type="pt", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
).images[0] |
|
|
|
actual_output = out[:2, :2, :2].flatten().cpu() |
|
expected_output = torch.tensor([0.7686, 0.8228, 0.6489, 0.7455, 0.8661, 0.8797, 0.8241, 0.8759]) |
|
|
|
assert torch_all_close(actual_output, expected_output, atol=5e-3) |
|
|
|
def test_encode_decode_f16(self): |
|
vae = ConsistencyDecoderVAE.from_pretrained( |
|
"openai/consistency-decoder", torch_dtype=torch.float16 |
|
) |
|
vae.to(torch_device) |
|
|
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/img2img/sketch-mountains-input.jpg" |
|
).resize((256, 256)) |
|
image = ( |
|
torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :] |
|
.half() |
|
.cuda() |
|
) |
|
|
|
latent = vae.encode(image).latent_dist.mean |
|
|
|
sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample |
|
|
|
actual_output = sample[0, :2, :2, :2].flatten().cpu() |
|
expected_output = torch.tensor( |
|
[-0.0111, -0.0125, -0.0017, -0.0007, 0.1257, 0.1465, 0.1450, 0.1471], |
|
dtype=torch.float16, |
|
) |
|
|
|
assert torch_all_close(actual_output, expected_output, atol=5e-3) |
|
|
|
def test_sd_f16(self): |
|
vae = ConsistencyDecoderVAE.from_pretrained( |
|
"openai/consistency-decoder", torch_dtype=torch.float16 |
|
) |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", |
|
torch_dtype=torch.float16, |
|
vae=vae, |
|
safety_checker=None, |
|
) |
|
pipe.to(torch_device) |
|
|
|
out = pipe( |
|
"horse", |
|
num_inference_steps=2, |
|
output_type="pt", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
).images[0] |
|
|
|
actual_output = out[:2, :2, :2].flatten().cpu() |
|
expected_output = torch.tensor( |
|
[0.0000, 0.0249, 0.0000, 0.0000, 0.1709, 0.2773, 0.0471, 0.1035], |
|
dtype=torch.float16, |
|
) |
|
|
|
assert torch_all_close(actual_output, expected_output, atol=5e-3) |
|
|
|
def test_vae_tiling(self): |
|
vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16) |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", vae=vae, safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
out_1 = pipe( |
|
"horse", |
|
num_inference_steps=2, |
|
output_type="pt", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
).images[0] |
|
|
|
|
|
pipe.enable_vae_tiling() |
|
out_2 = pipe( |
|
"horse", |
|
num_inference_steps=2, |
|
output_type="pt", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
).images[0] |
|
|
|
assert torch_all_close(out_1, out_2, atol=5e-3) |
|
|
|
|
|
shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)] |
|
with torch.no_grad(): |
|
for shape in shapes: |
|
image = torch.zeros(shape, device=torch_device, dtype=pipe.vae.dtype) |
|
pipe.vae.decode(image) |
|
|