--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser model-index: - name: cheater-7b results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: true load_in_4bit: false strict: false datasets: - path: ./julia/data.jsonl type: sharegpt conversation: chatml dataset_prepared_path: ./julia/prepared_data chat_template: chatml val_set_size: 0.05 output_dir: ./julia/lora-out hub_model_id: animmina/cheater-7b hub_strategy: every_save hf_use_auth_token: true sequence_len: 2048 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false adapter: lora lora_model_dir: lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: cheater-7b wandb_entity: wandb_watch: wandb_name: v02 wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.00003 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "<|im_end|>" unk_token: "" ```

# cheater-7b This model is a fine-tuned version of [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.554 | 0.04 | 1 | 0.6521 | | 0.4152 | 0.26 | 7 | 0.6499 | | 0.3984 | 0.52 | 14 | 0.6283 | | 0.4133 | 0.78 | 21 | 0.6140 | | 0.3772 | 1.04 | 28 | 0.5951 | | 0.3855 | 1.22 | 35 | 0.5869 | | 0.4077 | 1.48 | 42 | 0.5840 | | 0.3104 | 1.74 | 49 | 0.5793 | | 0.3345 | 2.0 | 56 | 0.5776 | | 0.3207 | 2.19 | 63 | 0.5761 | | 0.3679 | 2.44 | 70 | 0.5784 | | 0.3593 | 2.7 | 77 | 0.5781 | | 0.2391 | 2.96 | 84 | 0.5761 | | 0.3329 | 3.15 | 91 | 0.5743 | | 0.2636 | 3.41 | 98 | 0.5744 | | 0.3114 | 3.67 | 105 | 0.5741 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.0