--- library_name: transformers license: apache-2.0 base_model: sveyek/distilhubert-finetuned-gtzan-se-finetuned-gtzan-se-2-2 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-se-finetuned-gtzan-se-2-2-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.86 --- # distilhubert-finetuned-gtzan-se-finetuned-gtzan-se-2-2-finetuned-gtzan This model is a fine-tuned version of [sveyek/distilhubert-finetuned-gtzan-se-finetuned-gtzan-se-2-2](https://huggingface.co/sveyek/distilhubert-finetuned-gtzan-se-finetuned-gtzan-se-2-2) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8689 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0596 | 0.9956 | 56 | 0.8689 | 0.86 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3