command: - python3 - ${program} - --do_train - --do_eval - --use_scan - --gradient_checkpointing - --overwrite_output_dir - --predict_with_generate - --freeze_encoder - --streaming - --use_auth_token - --compilation_cache - --load_with_scan_weights # checkpoint is saved with scan weights - ${args} method: grid metric: goal: minimize name: eval/wer parameters: model_name_or_path: value: distil-whisper/large-32-2-ts-freeze-librispeech # resume from a partially trained checkpoint teacher_model_name_or_path: value: openai/whisper-large-v2 train_dataset_name: value: librispeech_asr+librispeech_asr+librispeech_asr+common_voice_13_0+voxpopuli+ami-ihm+ami-sdm+peoples_speech-clean+tedlium+switchboard-data+gigaspeech-l+spgispeech train_dataset_config_name: value: all+all+all+en+en+ihm+sdm+clean+release3+all+l+L train_split_name: value: train.clean.100+train.clean.360+train.other.500+train+train+train+train+train+train+train+train+train train_dataset_samples: value: 100+360+500+2300+450+90+90+12000+450+3600+2500+5000 eval_dataset_name: value: "distil-whisper/gigaspeech-l" eval_dataset_config_name: value: "l" cache_dir: value: /fsx/sanchit/cache dataset_cache_dir: value: /fsx/sanchit/cache output_dir: value: ./ per_device_train_batch_size: value: 128 per_device_eval_batch_size: value: 128 dtype: value: bfloat16 learning_rate: values: - 1e-3 - 3e-4 - 1e-4 - 3e-5 - 1e-5 lr_scheduler_type: value: constant_with_warmup warmup_steps: value: 50 max_steps: value: 500 eval_steps: value: 500 save_steps: value: 501 # don't save checkpoints during sweep dataloader_num_workers: value: 16 logging_steps: value: 5 wer_threshold: value: 10 program: run_distillation.py project: distil-whisper-sweeps