command: - python3 - ${program} - --do_train - --do_eval - --use_scan - --gradient_checkpointing - --overwrite_output_dir - --predict_with_generate - ${args} method: random metric: goal: minimize name: eval/wer parameters: model_name_or_path: value: distil-whisper/large-32-2 dataset_name: value: distil-whisper/librispeech_asr dataset_config_name: value: all train_split_name: value: train.clean.100+train.clean.360+train.other.500 eval_split_name: value: validation.clean text_column_name: value: whisper_transcript cache_dir: value: /home/sanchitgandhi/cache dataset_cache_dir: value: /home/sanchitgandhi/cache output_dir: value: ./ per_device_train_batch_size: value: 32 per_device_eval_batch_size: value: 16 dtype: value: bfloat16 learning_rate: distribution: log_uniform max: -6.91 min: -11.51 warmup_steps: value 500 num_train_epochs: value: 1 preprocessing_num_workers: value: 16 dataloader_num_workers: value: 16 logging_steps: value: 25 freeze_encoder: values: - True - False program: run_finetuning.py project: distil-whisper