|
2024/01/14 17:47:47 - mmengine - INFO - |
|
------------------------------------------------------------ |
|
System environment: |
|
sys.platform: linux |
|
Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] |
|
CUDA available: True |
|
numpy_random_seed: 1688668109 |
|
GPU 0,1,2,3,4,5,6,7: Tesla V100-SXM3-32GB |
|
CUDA_HOME: /usr/local/cuda |
|
NVCC: Cuda compilation tools, release 11.7, V11.7.99 |
|
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 |
|
PyTorch: 1.13.0 |
|
PyTorch compiling details: PyTorch built with: |
|
- GCC 9.3 |
|
- C++ Version: 201402 |
|
- Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications |
|
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815) |
|
- OpenMP 201511 (a.k.a. OpenMP 4.5) |
|
- LAPACK is enabled (usually provided by MKL) |
|
- NNPACK is enabled |
|
- CPU capability usage: AVX2 |
|
- CUDA Runtime 11.7 |
|
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37 |
|
- CuDNN 8.5 |
|
- Magma 2.6.1 |
|
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.7, CUDNN_VERSION=8.5.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, |
|
|
|
TorchVision: 0.14.0 |
|
OpenCV: 4.9.0 |
|
MMEngine: 0.10.1 |
|
|
|
Runtime environment: |
|
cudnn_benchmark: True |
|
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0} |
|
dist_cfg: {'backend': 'nccl'} |
|
seed: 1688668109 |
|
Distributed launcher: pytorch |
|
Distributed training: True |
|
GPU number: 8 |
|
------------------------------------------------------------ |
|
|
|
2024/01/14 17:47:48 - mmengine - INFO - Config: |
|
backbone_norm_cfg = dict(requires_grad=True, type='LN') |
|
checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_20220317-e9b98025.pth' |
|
crop_size = ( |
|
512, |
|
512, |
|
) |
|
data_preprocessor = dict( |
|
bgr_to_rgb=True, |
|
mean=[ |
|
123.675, |
|
116.28, |
|
103.53, |
|
], |
|
pad_val=0, |
|
seg_pad_val=255, |
|
size=( |
|
512, |
|
512, |
|
), |
|
std=[ |
|
58.395, |
|
57.12, |
|
57.375, |
|
], |
|
type='SegDataPreProcessor') |
|
data_root = 'data/ade/ADEChallengeData2016' |
|
dataset_type = 'ADE20KDataset' |
|
default_hooks = dict( |
|
checkpoint=dict(by_epoch=False, interval=16000, type='CheckpointHook'), |
|
logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'), |
|
param_scheduler=dict(type='ParamSchedulerHook'), |
|
sampler_seed=dict(type='DistSamplerSeedHook'), |
|
timer=dict(type='IterTimerHook'), |
|
visualization=dict(type='SegVisualizationHook')) |
|
default_scope = 'mmseg' |
|
env_cfg = dict( |
|
cudnn_benchmark=True, |
|
dist_cfg=dict(backend='nccl'), |
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) |
|
img_ratios = [ |
|
0.5, |
|
0.75, |
|
1.0, |
|
1.25, |
|
1.5, |
|
1.75, |
|
] |
|
launcher = 'pytorch' |
|
load_from = './work_dirs/upernet_vssm_4xb4-160k_ade20k-512x512_base/iter_160000.pth' |
|
log_level = 'INFO' |
|
log_processor = dict(by_epoch=False) |
|
model = dict( |
|
module=dict( |
|
auxiliary_head=dict( |
|
align_corners=False, |
|
channels=256, |
|
concat_input=False, |
|
dropout_ratio=0.1, |
|
in_channels=512, |
|
in_index=2, |
|
loss_decode=dict( |
|
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False), |
|
norm_cfg=dict(requires_grad=True, type='SyncBN'), |
|
num_classes=150, |
|
num_convs=1, |
|
type='FCNHead'), |
|
backbone=dict( |
|
act_cfg=dict(type='GELU'), |
|
attn_drop_rate=0.0, |
|
depths=( |
|
2, |
|
2, |
|
27, |
|
2, |
|
), |
|
dims=128, |
|
drop_path_rate=0.3, |
|
drop_rate=0.0, |
|
embed_dims=128, |
|
init_cfg=dict( |
|
checkpoint= |
|
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_20220317-e9b98025.pth', |
|
type='Pretrained'), |
|
mlp_ratio=4, |
|
norm_cfg=dict(requires_grad=True, type='LN'), |
|
num_heads=[ |
|
4, |
|
8, |
|
16, |
|
32, |
|
], |
|
out_indices=( |
|
0, |
|
1, |
|
2, |
|
3, |
|
), |
|
patch_norm=True, |
|
patch_size=4, |
|
pretrain_img_size=224, |
|
pretrained='../../ckpts/vssmbase/ckpt_epoch_260.pth', |
|
qk_scale=None, |
|
qkv_bias=True, |
|
strides=( |
|
4, |
|
2, |
|
2, |
|
2, |
|
), |
|
type='MMSEG_VSSM', |
|
use_abs_pos_embed=False, |
|
window_size=7), |
|
data_preprocessor=dict( |
|
bgr_to_rgb=True, |
|
mean=[ |
|
123.675, |
|
116.28, |
|
103.53, |
|
], |
|
pad_val=0, |
|
seg_pad_val=255, |
|
size=( |
|
512, |
|
512, |
|
), |
|
std=[ |
|
58.395, |
|
57.12, |
|
57.375, |
|
], |
|
type='SegDataPreProcessor'), |
|
decode_head=dict( |
|
align_corners=False, |
|
channels=512, |
|
dropout_ratio=0.1, |
|
in_channels=[ |
|
128, |
|
256, |
|
512, |
|
1024, |
|
], |
|
in_index=[ |
|
0, |
|
1, |
|
2, |
|
3, |
|
], |
|
loss_decode=dict( |
|
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False), |
|
norm_cfg=dict(requires_grad=True, type='SyncBN'), |
|
num_classes=150, |
|
pool_scales=( |
|
1, |
|
2, |
|
3, |
|
6, |
|
), |
|
type='UPerHead'), |
|
pretrained=None, |
|
test_cfg=dict(mode='whole'), |
|
train_cfg=dict(), |
|
type='EncoderDecoder'), |
|
type='SegTTAModel') |
|
norm_cfg = dict(requires_grad=True, type='SyncBN') |
|
optim_wrapper = dict( |
|
optimizer=dict( |
|
betas=( |
|
0.9, |
|
0.999, |
|
), lr=6e-05, type='AdamW', weight_decay=0.01), |
|
paramwise_cfg=dict( |
|
custom_keys=dict( |
|
absolute_pos_embed=dict(decay_mult=0.0), |
|
norm=dict(decay_mult=0.0), |
|
relative_position_bias_table=dict(decay_mult=0.0))), |
|
type='OptimWrapper') |
|
optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005) |
|
param_scheduler = [ |
|
dict( |
|
begin=0, by_epoch=False, end=1500, start_factor=1e-06, |
|
type='LinearLR'), |
|
dict( |
|
begin=1500, |
|
by_epoch=False, |
|
end=160000, |
|
eta_min=0.0, |
|
power=1.0, |
|
type='PolyLR'), |
|
] |
|
resume = False |
|
test_cfg = dict(type='TestLoop') |
|
test_dataloader = dict( |
|
batch_size=1, |
|
dataset=dict( |
|
data_prefix=dict( |
|
img_path='images/validation', |
|
seg_map_path='annotations/validation'), |
|
data_root='data/ade/ADEChallengeData2016', |
|
pipeline=[ |
|
dict(backend_args=None, type='LoadImageFromFile'), |
|
dict( |
|
transforms=[ |
|
[ |
|
dict(keep_ratio=True, scale_factor=0.5, type='Resize'), |
|
dict( |
|
keep_ratio=True, scale_factor=0.75, type='Resize'), |
|
dict(keep_ratio=True, scale_factor=1.0, type='Resize'), |
|
dict( |
|
keep_ratio=True, scale_factor=1.25, type='Resize'), |
|
dict(keep_ratio=True, scale_factor=1.5, type='Resize'), |
|
dict( |
|
keep_ratio=True, scale_factor=1.75, type='Resize'), |
|
], |
|
[ |
|
dict( |
|
direction='horizontal', |
|
prob=0.0, |
|
type='RandomFlip'), |
|
dict( |
|
direction='horizontal', |
|
prob=1.0, |
|
type='RandomFlip'), |
|
], |
|
[ |
|
dict(type='LoadAnnotations'), |
|
], |
|
[ |
|
dict(type='PackSegInputs'), |
|
], |
|
], |
|
type='TestTimeAug'), |
|
], |
|
type='ADE20KDataset'), |
|
num_workers=4, |
|
persistent_workers=True, |
|
sampler=dict(shuffle=False, type='DefaultSampler')) |
|
test_evaluator = dict( |
|
iou_metrics=[ |
|
'mIoU', |
|
], type='IoUMetric') |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(keep_ratio=True, scale=( |
|
2048, |
|
512, |
|
), type='Resize'), |
|
dict(reduce_zero_label=True, type='LoadAnnotations'), |
|
dict(type='PackSegInputs'), |
|
] |
|
train_cfg = dict( |
|
max_iters=160000, type='IterBasedTrainLoop', val_interval=16000) |
|
train_dataloader = dict( |
|
batch_size=2, |
|
dataset=dict( |
|
data_prefix=dict( |
|
img_path='images/training', seg_map_path='annotations/training'), |
|
data_root='data/ade/ADEChallengeData2016', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(reduce_zero_label=True, type='LoadAnnotations'), |
|
dict( |
|
keep_ratio=True, |
|
ratio_range=( |
|
0.5, |
|
2.0, |
|
), |
|
scale=( |
|
2048, |
|
512, |
|
), |
|
type='RandomResize'), |
|
dict( |
|
cat_max_ratio=0.75, crop_size=( |
|
512, |
|
512, |
|
), type='RandomCrop'), |
|
dict(prob=0.5, type='RandomFlip'), |
|
dict(type='PhotoMetricDistortion'), |
|
dict(type='PackSegInputs'), |
|
], |
|
type='ADE20KDataset'), |
|
num_workers=4, |
|
persistent_workers=True, |
|
sampler=dict(shuffle=True, type='InfiniteSampler')) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(reduce_zero_label=True, type='LoadAnnotations'), |
|
dict( |
|
keep_ratio=True, |
|
ratio_range=( |
|
0.5, |
|
2.0, |
|
), |
|
scale=( |
|
2048, |
|
512, |
|
), |
|
type='RandomResize'), |
|
dict(cat_max_ratio=0.75, crop_size=( |
|
512, |
|
512, |
|
), type='RandomCrop'), |
|
dict(prob=0.5, type='RandomFlip'), |
|
dict(type='PhotoMetricDistortion'), |
|
dict(type='PackSegInputs'), |
|
] |
|
tta_model = dict( |
|
module=dict( |
|
auxiliary_head=dict( |
|
align_corners=False, |
|
channels=256, |
|
concat_input=False, |
|
dropout_ratio=0.1, |
|
in_channels=512, |
|
in_index=2, |
|
loss_decode=dict( |
|
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False), |
|
norm_cfg=dict(requires_grad=True, type='SyncBN'), |
|
num_classes=150, |
|
num_convs=1, |
|
type='FCNHead'), |
|
backbone=dict( |
|
act_cfg=dict(type='GELU'), |
|
attn_drop_rate=0.0, |
|
depths=( |
|
2, |
|
2, |
|
27, |
|
2, |
|
), |
|
dims=128, |
|
drop_path_rate=0.3, |
|
drop_rate=0.0, |
|
embed_dims=128, |
|
init_cfg=dict( |
|
checkpoint= |
|
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_20220317-e9b98025.pth', |
|
type='Pretrained'), |
|
mlp_ratio=4, |
|
norm_cfg=dict(requires_grad=True, type='LN'), |
|
num_heads=[ |
|
4, |
|
8, |
|
16, |
|
32, |
|
], |
|
out_indices=( |
|
0, |
|
1, |
|
2, |
|
3, |
|
), |
|
patch_norm=True, |
|
patch_size=4, |
|
pretrain_img_size=224, |
|
pretrained='../../ckpts/vssmbase/ckpt_epoch_260.pth', |
|
qk_scale=None, |
|
qkv_bias=True, |
|
strides=( |
|
4, |
|
2, |
|
2, |
|
2, |
|
), |
|
type='MMSEG_VSSM', |
|
use_abs_pos_embed=False, |
|
window_size=7), |
|
data_preprocessor=dict( |
|
bgr_to_rgb=True, |
|
mean=[ |
|
123.675, |
|
116.28, |
|
103.53, |
|
], |
|
pad_val=0, |
|
seg_pad_val=255, |
|
size=( |
|
512, |
|
512, |
|
), |
|
std=[ |
|
58.395, |
|
57.12, |
|
57.375, |
|
], |
|
type='SegDataPreProcessor'), |
|
decode_head=dict( |
|
align_corners=False, |
|
channels=512, |
|
dropout_ratio=0.1, |
|
in_channels=[ |
|
128, |
|
256, |
|
512, |
|
1024, |
|
], |
|
in_index=[ |
|
0, |
|
1, |
|
2, |
|
3, |
|
], |
|
loss_decode=dict( |
|
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False), |
|
norm_cfg=dict(requires_grad=True, type='SyncBN'), |
|
num_classes=150, |
|
pool_scales=( |
|
1, |
|
2, |
|
3, |
|
6, |
|
), |
|
type='UPerHead'), |
|
pretrained=None, |
|
test_cfg=dict(mode='whole'), |
|
train_cfg=dict(), |
|
type='EncoderDecoder'), |
|
type='SegTTAModel') |
|
tta_pipeline = [ |
|
dict(backend_args=None, type='LoadImageFromFile'), |
|
dict( |
|
transforms=[ |
|
[ |
|
dict(keep_ratio=True, scale_factor=0.5, type='Resize'), |
|
dict(keep_ratio=True, scale_factor=0.75, type='Resize'), |
|
dict(keep_ratio=True, scale_factor=1.0, type='Resize'), |
|
dict(keep_ratio=True, scale_factor=1.25, type='Resize'), |
|
dict(keep_ratio=True, scale_factor=1.5, type='Resize'), |
|
dict(keep_ratio=True, scale_factor=1.75, type='Resize'), |
|
], |
|
[ |
|
dict(direction='horizontal', prob=0.0, type='RandomFlip'), |
|
dict(direction='horizontal', prob=1.0, type='RandomFlip'), |
|
], |
|
[ |
|
dict(type='LoadAnnotations'), |
|
], |
|
[ |
|
dict(type='PackSegInputs'), |
|
], |
|
], |
|
type='TestTimeAug'), |
|
] |
|
val_cfg = dict(type='ValLoop') |
|
val_dataloader = dict( |
|
batch_size=1, |
|
dataset=dict( |
|
data_prefix=dict( |
|
img_path='images/validation', |
|
seg_map_path='annotations/validation'), |
|
data_root='data/ade/ADEChallengeData2016', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(keep_ratio=True, scale=( |
|
2048, |
|
512, |
|
), type='Resize'), |
|
dict(reduce_zero_label=True, type='LoadAnnotations'), |
|
dict(type='PackSegInputs'), |
|
], |
|
type='ADE20KDataset'), |
|
num_workers=4, |
|
persistent_workers=True, |
|
sampler=dict(shuffle=False, type='DefaultSampler')) |
|
val_evaluator = dict( |
|
iou_metrics=[ |
|
'mIoU', |
|
], type='IoUMetric') |
|
vis_backends = [ |
|
dict(type='LocalVisBackend'), |
|
] |
|
visualizer = dict( |
|
name='visualizer', |
|
type='SegLocalVisualizer', |
|
vis_backends=[ |
|
dict(type='LocalVisBackend'), |
|
]) |
|
work_dir = './work_dirs/upernet_vssm_4xb4-160k_ade20k-512x512_base' |
|
|
|
2024/01/14 17:47:58 - mmengine - INFO - Hooks will be executed in the following order: |
|
before_run: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(BELOW_NORMAL) LoggerHook |
|
-------------------- |
|
before_train: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(NORMAL ) IterTimerHook |
|
(VERY_LOW ) CheckpointHook |
|
-------------------- |
|
before_train_epoch: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(NORMAL ) IterTimerHook |
|
(NORMAL ) DistSamplerSeedHook |
|
-------------------- |
|
before_train_iter: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(NORMAL ) IterTimerHook |
|
-------------------- |
|
after_train_iter: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(NORMAL ) IterTimerHook |
|
(NORMAL ) SegVisualizationHook |
|
(BELOW_NORMAL) LoggerHook |
|
(LOW ) ParamSchedulerHook |
|
(VERY_LOW ) CheckpointHook |
|
-------------------- |
|
after_train_epoch: |
|
(NORMAL ) IterTimerHook |
|
(LOW ) ParamSchedulerHook |
|
(VERY_LOW ) CheckpointHook |
|
-------------------- |
|
before_val: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
-------------------- |
|
before_val_epoch: |
|
(NORMAL ) IterTimerHook |
|
-------------------- |
|
before_val_iter: |
|
(NORMAL ) IterTimerHook |
|
-------------------- |
|
after_val_iter: |
|
(NORMAL ) IterTimerHook |
|
(NORMAL ) SegVisualizationHook |
|
(BELOW_NORMAL) LoggerHook |
|
-------------------- |
|
after_val_epoch: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(NORMAL ) IterTimerHook |
|
(BELOW_NORMAL) LoggerHook |
|
(LOW ) ParamSchedulerHook |
|
(VERY_LOW ) CheckpointHook |
|
-------------------- |
|
after_val: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
-------------------- |
|
after_train: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(VERY_LOW ) CheckpointHook |
|
-------------------- |
|
before_test: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
-------------------- |
|
before_test_epoch: |
|
(NORMAL ) IterTimerHook |
|
-------------------- |
|
before_test_iter: |
|
(NORMAL ) IterTimerHook |
|
-------------------- |
|
after_test_iter: |
|
(NORMAL ) IterTimerHook |
|
(NORMAL ) SegVisualizationHook |
|
(BELOW_NORMAL) LoggerHook |
|
-------------------- |
|
after_test_epoch: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(NORMAL ) IterTimerHook |
|
(BELOW_NORMAL) LoggerHook |
|
-------------------- |
|
after_test: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
-------------------- |
|
after_run: |
|
(BELOW_NORMAL) LoggerHook |
|
-------------------- |
|
2024/01/14 17:47:59 - mmengine - WARNING - The prefix is not set in metric class IoUMetric. |
|
2024/01/14 17:48:08 - mmengine - INFO - Load checkpoint from ./work_dirs/upernet_vssm_4xb4-160k_ade20k-512x512_base/iter_160000.pth |
|
2024/01/14 18:02:41 - mmengine - INFO - Iter(test) [ 50/250] eta: 0:58:11 time: 10.1193 data_time: 0.0121 memory: 20518 |
|
2024/01/14 18:10:19 - mmengine - INFO - Iter(test) [100/250] eta: 0:33:17 time: 8.5116 data_time: 0.0100 memory: 19429 |
|
2024/01/14 18:15:12 - mmengine - INFO - Iter(test) [150/250] eta: 0:18:02 time: 5.7400 data_time: 0.0111 memory: 19330 |
|
2024/01/14 18:20:32 - mmengine - INFO - Iter(test) [200/250] eta: 0:08:05 time: 6.0980 data_time: 0.0114 memory: 19330 |
|
2024/01/14 18:25:01 - mmengine - INFO - Iter(test) [250/250] eta: 0:00:00 time: 3.3462 data_time: 0.0118 memory: 18931 |
|
2024/01/14 18:28:07 - mmengine - INFO - per class results: |
|
2024/01/14 18:28:07 - mmengine - INFO - |
|
+---------------------+-------+-------+ |
|
| Class | IoU | Acc | |
|
+---------------------+-------+-------+ |
|
| wall | 78.97 | 89.79 | |
|
| building | 83.44 | 93.48 | |
|
| sky | 94.33 | 97.56 | |
|
| floor | 82.05 | 90.77 | |
|
| tree | 74.87 | 88.67 | |
|
| ceiling | 85.17 | 93.67 | |
|
| road | 84.22 | 90.66 | |
|
| bed | 89.05 | 96.36 | |
|
| windowpane | 63.55 | 79.82 | |
|
| grass | 69.99 | 84.45 | |
|
| cabinet | 62.16 | 75.89 | |
|
| sidewalk | 66.09 | 81.19 | |
|
| person | 81.66 | 93.13 | |
|
| earth | 37.51 | 48.77 | |
|
| door | 52.74 | 65.76 | |
|
| table | 62.93 | 78.47 | |
|
| mountain | 63.34 | 78.01 | |
|
| plant | 52.21 | 63.43 | |
|
| curtain | 75.86 | 87.52 | |
|
| chair | 61.77 | 72.89 | |
|
| car | 84.12 | 90.96 | |
|
| water | 53.74 | 67.62 | |
|
| painting | 76.67 | 89.15 | |
|
| sofa | 69.15 | 84.85 | |
|
| shelf | 43.65 | 63.48 | |
|
| house | 37.83 | 50.42 | |
|
| sea | 63.54 | 89.14 | |
|
| mirror | 69.31 | 76.99 | |
|
| rug | 55.02 | 64.68 | |
|
| field | 27.91 | 43.35 | |
|
| armchair | 48.02 | 67.01 | |
|
| seat | 63.51 | 84.09 | |
|
| fence | 47.72 | 61.45 | |
|
| desk | 53.92 | 72.17 | |
|
| rock | 45.01 | 66.9 | |
|
| wardrobe | 49.15 | 59.93 | |
|
| lamp | 66.03 | 77.09 | |
|
| bathtub | 80.36 | 85.58 | |
|
| railing | 35.23 | 49.33 | |
|
| cushion | 60.43 | 73.02 | |
|
| base | 31.65 | 42.54 | |
|
| box | 26.89 | 31.63 | |
|
| column | 48.94 | 56.13 | |
|
| signboard | 39.69 | 50.97 | |
|
| chest of drawers | 48.02 | 62.14 | |
|
| counter | 25.34 | 35.46 | |
|
| sand | 55.67 | 73.43 | |
|
| sink | 74.58 | 80.96 | |
|
| skyscraper | 42.42 | 51.55 | |
|
| fireplace | 80.92 | 91.73 | |
|
| refrigerator | 77.76 | 85.12 | |
|
| grandstand | 45.02 | 83.82 | |
|
| path | 16.49 | 26.37 | |
|
| stairs | 35.1 | 42.42 | |
|
| runway | 72.8 | 93.9 | |
|
| case | 48.01 | 62.28 | |
|
| pool table | 93.33 | 97.32 | |
|
| pillow | 61.87 | 72.67 | |
|
| screen door | 68.21 | 77.03 | |
|
| stairway | 32.7 | 38.45 | |
|
| river | 11.6 | 22.81 | |
|
| bridge | 38.77 | 43.57 | |
|
| bookcase | 44.89 | 65.61 | |
|
| blind | 46.61 | 48.95 | |
|
| coffee table | 59.71 | 84.15 | |
|
| toilet | 84.8 | 90.86 | |
|
| flower | 43.64 | 64.1 | |
|
| book | 49.21 | 66.22 | |
|
| hill | 13.48 | 21.64 | |
|
| bench | 55.21 | 64.27 | |
|
| countertop | 49.06 | 73.98 | |
|
| stove | 77.39 | 83.56 | |
|
| palm | 51.11 | 67.45 | |
|
| kitchen island | 49.14 | 76.72 | |
|
| computer | 69.78 | 77.84 | |
|
| swivel chair | 39.71 | 56.34 | |
|
| boat | 48.05 | 52.89 | |
|
| bar | 26.98 | 35.7 | |
|
| arcade machine | 69.15 | 76.38 | |
|
| hovel | 20.92 | 30.12 | |
|
| bus | 87.77 | 97.1 | |
|
| towel | 67.32 | 75.99 | |
|
| light | 57.87 | 64.92 | |
|
| truck | 37.61 | 48.83 | |
|
| tower | 35.31 | 45.43 | |
|
| chandelier | 65.99 | 79.86 | |
|
| awning | 31.7 | 37.19 | |
|
| streetlight | 28.83 | 35.37 | |
|
| booth | 52.58 | 58.07 | |
|
| television receiver | 70.28 | 80.92 | |
|
| airplane | 61.82 | 68.65 | |
|
| dirt track | 13.58 | 49.33 | |
|
| apparel | 40.61 | 58.04 | |
|
| pole | 27.08 | 34.57 | |
|
| land | 1.6 | 3.64 | |
|
| bannister | 15.63 | 19.65 | |
|
| escalator | 28.68 | 31.74 | |
|
| ottoman | 52.2 | 63.91 | |
|
| bottle | 37.11 | 60.8 | |
|
| buffet | 34.32 | 38.55 | |
|
| poster | 30.1 | 37.59 | |
|
| stage | 19.22 | 26.17 | |
|
| van | 42.28 | 60.26 | |
|
| ship | 61.48 | 88.98 | |
|
| fountain | 19.35 | 21.66 | |
|
| conveyer belt | 86.38 | 92.34 | |
|
| canopy | 31.41 | 40.68 | |
|
| washer | 75.23 | 76.0 | |
|
| plaything | 30.46 | 46.68 | |
|
| swimming pool | 70.72 | 77.6 | |
|
| stool | 44.38 | 59.55 | |
|
| barrel | 60.72 | 73.06 | |
|
| basket | 37.5 | 48.99 | |
|
| waterfall | 64.29 | 78.71 | |
|
| tent | 92.9 | 98.47 | |
|
| bag | 16.7 | 19.33 | |
|
| minibike | 71.87 | 86.48 | |
|
| cradle | 77.59 | 96.96 | |
|
| oven | 44.84 | 79.75 | |
|
| ball | 33.6 | 63.33 | |
|
| food | 49.67 | 60.48 | |
|
| step | 11.71 | 13.09 | |
|
| tank | 57.11 | 61.44 | |
|
| trade name | 29.41 | 33.71 | |
|
| microwave | 71.46 | 75.56 | |
|
| pot | 47.52 | 56.11 | |
|
| animal | 43.99 | 44.89 | |
|
| bicycle | 56.79 | 78.38 | |
|
| lake | 54.44 | 63.37 | |
|
| dishwasher | 67.34 | 71.8 | |
|
| screen | 52.35 | 69.01 | |
|
| blanket | 9.74 | 11.95 | |
|
| sculpture | 69.57 | 84.66 | |
|
| hood | 68.9 | 73.3 | |
|
| sconce | 50.94 | 60.25 | |
|
| vase | 46.92 | 61.85 | |
|
| traffic light | 38.47 | 57.45 | |
|
| tray | 11.6 | 18.94 | |
|
| ashcan | 49.51 | 59.73 | |
|
| fan | 64.55 | 77.35 | |
|
| pier | 43.19 | 53.55 | |
|
| crt screen | 6.65 | 20.83 | |
|
| plate | 56.85 | 72.0 | |
|
| monitor | 6.72 | 9.36 | |
|
| bulletin board | 40.76 | 47.92 | |
|
| shower | 2.85 | 4.45 | |
|
| radiator | 66.1 | 72.02 | |
|
| glass | 14.93 | 15.65 | |
|
| clock | 39.09 | 45.98 | |
|
| flag | 53.01 | 56.24 | |
|
+---------------------+-------+-------+ |
|
2024/01/14 18:28:07 - mmengine - INFO - Iter(test) [250/250] aAcc: 83.9200 mIoU: 51.1200 mAcc: 62.5500 data_time: 0.0509 time: 8.8501 |
|
|