VMamba / ade20k_upernet_vmamba_base_160k_512_iter160000_511.log
sunsmarterjieleaf's picture
Upload ade20k_upernet_vmamba_base_160k_512_iter160000_511.log
e205e5c verified
2024/01/14 17:47:47 - mmengine - INFO -
------------------------------------------------------------
System environment:
sys.platform: linux
Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]
CUDA available: True
numpy_random_seed: 1688668109
GPU 0,1,2,3,4,5,6,7: Tesla V100-SXM3-32GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.7, V11.7.99
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
PyTorch: 1.13.0
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201402
- Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.7
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
- CuDNN 8.5
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.7, CUDNN_VERSION=8.5.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.14.0
OpenCV: 4.9.0
MMEngine: 0.10.1
Runtime environment:
cudnn_benchmark: True
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
dist_cfg: {'backend': 'nccl'}
seed: 1688668109
Distributed launcher: pytorch
Distributed training: True
GPU number: 8
------------------------------------------------------------
2024/01/14 17:47:48 - mmengine - INFO - Config:
backbone_norm_cfg = dict(requires_grad=True, type='LN')
checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_20220317-e9b98025.pth'
crop_size = (
512,
512,
)
data_preprocessor = dict(
bgr_to_rgb=True,
mean=[
123.675,
116.28,
103.53,
],
pad_val=0,
seg_pad_val=255,
size=(
512,
512,
),
std=[
58.395,
57.12,
57.375,
],
type='SegDataPreProcessor')
data_root = 'data/ade/ADEChallengeData2016'
dataset_type = 'ADE20KDataset'
default_hooks = dict(
checkpoint=dict(by_epoch=False, interval=16000, type='CheckpointHook'),
logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
sampler_seed=dict(type='DistSamplerSeedHook'),
timer=dict(type='IterTimerHook'),
visualization=dict(type='SegVisualizationHook'))
default_scope = 'mmseg'
env_cfg = dict(
cudnn_benchmark=True,
dist_cfg=dict(backend='nccl'),
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
img_ratios = [
0.5,
0.75,
1.0,
1.25,
1.5,
1.75,
]
launcher = 'pytorch'
load_from = './work_dirs/upernet_vssm_4xb4-160k_ade20k-512x512_base/iter_160000.pth'
log_level = 'INFO'
log_processor = dict(by_epoch=False)
model = dict(
module=dict(
auxiliary_head=dict(
align_corners=False,
channels=256,
concat_input=False,
dropout_ratio=0.1,
in_channels=512,
in_index=2,
loss_decode=dict(
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
norm_cfg=dict(requires_grad=True, type='SyncBN'),
num_classes=150,
num_convs=1,
type='FCNHead'),
backbone=dict(
act_cfg=dict(type='GELU'),
attn_drop_rate=0.0,
depths=(
2,
2,
27,
2,
),
dims=128,
drop_path_rate=0.3,
drop_rate=0.0,
embed_dims=128,
init_cfg=dict(
checkpoint=
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_20220317-e9b98025.pth',
type='Pretrained'),
mlp_ratio=4,
norm_cfg=dict(requires_grad=True, type='LN'),
num_heads=[
4,
8,
16,
32,
],
out_indices=(
0,
1,
2,
3,
),
patch_norm=True,
patch_size=4,
pretrain_img_size=224,
pretrained='../../ckpts/vssmbase/ckpt_epoch_260.pth',
qk_scale=None,
qkv_bias=True,
strides=(
4,
2,
2,
2,
),
type='MMSEG_VSSM',
use_abs_pos_embed=False,
window_size=7),
data_preprocessor=dict(
bgr_to_rgb=True,
mean=[
123.675,
116.28,
103.53,
],
pad_val=0,
seg_pad_val=255,
size=(
512,
512,
),
std=[
58.395,
57.12,
57.375,
],
type='SegDataPreProcessor'),
decode_head=dict(
align_corners=False,
channels=512,
dropout_ratio=0.1,
in_channels=[
128,
256,
512,
1024,
],
in_index=[
0,
1,
2,
3,
],
loss_decode=dict(
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
norm_cfg=dict(requires_grad=True, type='SyncBN'),
num_classes=150,
pool_scales=(
1,
2,
3,
6,
),
type='UPerHead'),
pretrained=None,
test_cfg=dict(mode='whole'),
train_cfg=dict(),
type='EncoderDecoder'),
type='SegTTAModel')
norm_cfg = dict(requires_grad=True, type='SyncBN')
optim_wrapper = dict(
optimizer=dict(
betas=(
0.9,
0.999,
), lr=6e-05, type='AdamW', weight_decay=0.01),
paramwise_cfg=dict(
custom_keys=dict(
absolute_pos_embed=dict(decay_mult=0.0),
norm=dict(decay_mult=0.0),
relative_position_bias_table=dict(decay_mult=0.0))),
type='OptimWrapper')
optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005)
param_scheduler = [
dict(
begin=0, by_epoch=False, end=1500, start_factor=1e-06,
type='LinearLR'),
dict(
begin=1500,
by_epoch=False,
end=160000,
eta_min=0.0,
power=1.0,
type='PolyLR'),
]
resume = False
test_cfg = dict(type='TestLoop')
test_dataloader = dict(
batch_size=1,
dataset=dict(
data_prefix=dict(
img_path='images/validation',
seg_map_path='annotations/validation'),
data_root='data/ade/ADEChallengeData2016',
pipeline=[
dict(backend_args=None, type='LoadImageFromFile'),
dict(
transforms=[
[
dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
dict(
keep_ratio=True, scale_factor=0.75, type='Resize'),
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
dict(
keep_ratio=True, scale_factor=1.25, type='Resize'),
dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
dict(
keep_ratio=True, scale_factor=1.75, type='Resize'),
],
[
dict(
direction='horizontal',
prob=0.0,
type='RandomFlip'),
dict(
direction='horizontal',
prob=1.0,
type='RandomFlip'),
],
[
dict(type='LoadAnnotations'),
],
[
dict(type='PackSegInputs'),
],
],
type='TestTimeAug'),
],
type='ADE20KDataset'),
num_workers=4,
persistent_workers=True,
sampler=dict(shuffle=False, type='DefaultSampler'))
test_evaluator = dict(
iou_metrics=[
'mIoU',
], type='IoUMetric')
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(keep_ratio=True, scale=(
2048,
512,
), type='Resize'),
dict(reduce_zero_label=True, type='LoadAnnotations'),
dict(type='PackSegInputs'),
]
train_cfg = dict(
max_iters=160000, type='IterBasedTrainLoop', val_interval=16000)
train_dataloader = dict(
batch_size=2,
dataset=dict(
data_prefix=dict(
img_path='images/training', seg_map_path='annotations/training'),
data_root='data/ade/ADEChallengeData2016',
pipeline=[
dict(type='LoadImageFromFile'),
dict(reduce_zero_label=True, type='LoadAnnotations'),
dict(
keep_ratio=True,
ratio_range=(
0.5,
2.0,
),
scale=(
2048,
512,
),
type='RandomResize'),
dict(
cat_max_ratio=0.75, crop_size=(
512,
512,
), type='RandomCrop'),
dict(prob=0.5, type='RandomFlip'),
dict(type='PhotoMetricDistortion'),
dict(type='PackSegInputs'),
],
type='ADE20KDataset'),
num_workers=4,
persistent_workers=True,
sampler=dict(shuffle=True, type='InfiniteSampler'))
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(reduce_zero_label=True, type='LoadAnnotations'),
dict(
keep_ratio=True,
ratio_range=(
0.5,
2.0,
),
scale=(
2048,
512,
),
type='RandomResize'),
dict(cat_max_ratio=0.75, crop_size=(
512,
512,
), type='RandomCrop'),
dict(prob=0.5, type='RandomFlip'),
dict(type='PhotoMetricDistortion'),
dict(type='PackSegInputs'),
]
tta_model = dict(
module=dict(
auxiliary_head=dict(
align_corners=False,
channels=256,
concat_input=False,
dropout_ratio=0.1,
in_channels=512,
in_index=2,
loss_decode=dict(
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
norm_cfg=dict(requires_grad=True, type='SyncBN'),
num_classes=150,
num_convs=1,
type='FCNHead'),
backbone=dict(
act_cfg=dict(type='GELU'),
attn_drop_rate=0.0,
depths=(
2,
2,
27,
2,
),
dims=128,
drop_path_rate=0.3,
drop_rate=0.0,
embed_dims=128,
init_cfg=dict(
checkpoint=
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_20220317-e9b98025.pth',
type='Pretrained'),
mlp_ratio=4,
norm_cfg=dict(requires_grad=True, type='LN'),
num_heads=[
4,
8,
16,
32,
],
out_indices=(
0,
1,
2,
3,
),
patch_norm=True,
patch_size=4,
pretrain_img_size=224,
pretrained='../../ckpts/vssmbase/ckpt_epoch_260.pth',
qk_scale=None,
qkv_bias=True,
strides=(
4,
2,
2,
2,
),
type='MMSEG_VSSM',
use_abs_pos_embed=False,
window_size=7),
data_preprocessor=dict(
bgr_to_rgb=True,
mean=[
123.675,
116.28,
103.53,
],
pad_val=0,
seg_pad_val=255,
size=(
512,
512,
),
std=[
58.395,
57.12,
57.375,
],
type='SegDataPreProcessor'),
decode_head=dict(
align_corners=False,
channels=512,
dropout_ratio=0.1,
in_channels=[
128,
256,
512,
1024,
],
in_index=[
0,
1,
2,
3,
],
loss_decode=dict(
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
norm_cfg=dict(requires_grad=True, type='SyncBN'),
num_classes=150,
pool_scales=(
1,
2,
3,
6,
),
type='UPerHead'),
pretrained=None,
test_cfg=dict(mode='whole'),
train_cfg=dict(),
type='EncoderDecoder'),
type='SegTTAModel')
tta_pipeline = [
dict(backend_args=None, type='LoadImageFromFile'),
dict(
transforms=[
[
dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
],
[
dict(direction='horizontal', prob=0.0, type='RandomFlip'),
dict(direction='horizontal', prob=1.0, type='RandomFlip'),
],
[
dict(type='LoadAnnotations'),
],
[
dict(type='PackSegInputs'),
],
],
type='TestTimeAug'),
]
val_cfg = dict(type='ValLoop')
val_dataloader = dict(
batch_size=1,
dataset=dict(
data_prefix=dict(
img_path='images/validation',
seg_map_path='annotations/validation'),
data_root='data/ade/ADEChallengeData2016',
pipeline=[
dict(type='LoadImageFromFile'),
dict(keep_ratio=True, scale=(
2048,
512,
), type='Resize'),
dict(reduce_zero_label=True, type='LoadAnnotations'),
dict(type='PackSegInputs'),
],
type='ADE20KDataset'),
num_workers=4,
persistent_workers=True,
sampler=dict(shuffle=False, type='DefaultSampler'))
val_evaluator = dict(
iou_metrics=[
'mIoU',
], type='IoUMetric')
vis_backends = [
dict(type='LocalVisBackend'),
]
visualizer = dict(
name='visualizer',
type='SegLocalVisualizer',
vis_backends=[
dict(type='LocalVisBackend'),
])
work_dir = './work_dirs/upernet_vssm_4xb4-160k_ade20k-512x512_base'
2024/01/14 17:47:58 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) RuntimeInfoHook
(BELOW_NORMAL) LoggerHook
--------------------
before_train:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(VERY_LOW ) CheckpointHook
--------------------
before_train_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) DistSamplerSeedHook
--------------------
before_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
--------------------
after_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) SegVisualizationHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train_epoch:
(NORMAL ) IterTimerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
before_val:
(VERY_HIGH ) RuntimeInfoHook
--------------------
before_val_epoch:
(NORMAL ) IterTimerHook
--------------------
before_val_iter:
(NORMAL ) IterTimerHook
--------------------
after_val_iter:
(NORMAL ) IterTimerHook
(NORMAL ) SegVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_val_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_val:
(VERY_HIGH ) RuntimeInfoHook
--------------------
after_train:
(VERY_HIGH ) RuntimeInfoHook
(VERY_LOW ) CheckpointHook
--------------------
before_test:
(VERY_HIGH ) RuntimeInfoHook
--------------------
before_test_epoch:
(NORMAL ) IterTimerHook
--------------------
before_test_iter:
(NORMAL ) IterTimerHook
--------------------
after_test_iter:
(NORMAL ) IterTimerHook
(NORMAL ) SegVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test:
(VERY_HIGH ) RuntimeInfoHook
--------------------
after_run:
(BELOW_NORMAL) LoggerHook
--------------------
2024/01/14 17:47:59 - mmengine - WARNING - The prefix is not set in metric class IoUMetric.
2024/01/14 17:48:08 - mmengine - INFO - Load checkpoint from ./work_dirs/upernet_vssm_4xb4-160k_ade20k-512x512_base/iter_160000.pth
2024/01/14 18:02:41 - mmengine - INFO - Iter(test) [ 50/250] eta: 0:58:11 time: 10.1193 data_time: 0.0121 memory: 20518
2024/01/14 18:10:19 - mmengine - INFO - Iter(test) [100/250] eta: 0:33:17 time: 8.5116 data_time: 0.0100 memory: 19429
2024/01/14 18:15:12 - mmengine - INFO - Iter(test) [150/250] eta: 0:18:02 time: 5.7400 data_time: 0.0111 memory: 19330
2024/01/14 18:20:32 - mmengine - INFO - Iter(test) [200/250] eta: 0:08:05 time: 6.0980 data_time: 0.0114 memory: 19330
2024/01/14 18:25:01 - mmengine - INFO - Iter(test) [250/250] eta: 0:00:00 time: 3.3462 data_time: 0.0118 memory: 18931
2024/01/14 18:28:07 - mmengine - INFO - per class results:
2024/01/14 18:28:07 - mmengine - INFO -
+---------------------+-------+-------+
| Class | IoU | Acc |
+---------------------+-------+-------+
| wall | 78.97 | 89.79 |
| building | 83.44 | 93.48 |
| sky | 94.33 | 97.56 |
| floor | 82.05 | 90.77 |
| tree | 74.87 | 88.67 |
| ceiling | 85.17 | 93.67 |
| road | 84.22 | 90.66 |
| bed | 89.05 | 96.36 |
| windowpane | 63.55 | 79.82 |
| grass | 69.99 | 84.45 |
| cabinet | 62.16 | 75.89 |
| sidewalk | 66.09 | 81.19 |
| person | 81.66 | 93.13 |
| earth | 37.51 | 48.77 |
| door | 52.74 | 65.76 |
| table | 62.93 | 78.47 |
| mountain | 63.34 | 78.01 |
| plant | 52.21 | 63.43 |
| curtain | 75.86 | 87.52 |
| chair | 61.77 | 72.89 |
| car | 84.12 | 90.96 |
| water | 53.74 | 67.62 |
| painting | 76.67 | 89.15 |
| sofa | 69.15 | 84.85 |
| shelf | 43.65 | 63.48 |
| house | 37.83 | 50.42 |
| sea | 63.54 | 89.14 |
| mirror | 69.31 | 76.99 |
| rug | 55.02 | 64.68 |
| field | 27.91 | 43.35 |
| armchair | 48.02 | 67.01 |
| seat | 63.51 | 84.09 |
| fence | 47.72 | 61.45 |
| desk | 53.92 | 72.17 |
| rock | 45.01 | 66.9 |
| wardrobe | 49.15 | 59.93 |
| lamp | 66.03 | 77.09 |
| bathtub | 80.36 | 85.58 |
| railing | 35.23 | 49.33 |
| cushion | 60.43 | 73.02 |
| base | 31.65 | 42.54 |
| box | 26.89 | 31.63 |
| column | 48.94 | 56.13 |
| signboard | 39.69 | 50.97 |
| chest of drawers | 48.02 | 62.14 |
| counter | 25.34 | 35.46 |
| sand | 55.67 | 73.43 |
| sink | 74.58 | 80.96 |
| skyscraper | 42.42 | 51.55 |
| fireplace | 80.92 | 91.73 |
| refrigerator | 77.76 | 85.12 |
| grandstand | 45.02 | 83.82 |
| path | 16.49 | 26.37 |
| stairs | 35.1 | 42.42 |
| runway | 72.8 | 93.9 |
| case | 48.01 | 62.28 |
| pool table | 93.33 | 97.32 |
| pillow | 61.87 | 72.67 |
| screen door | 68.21 | 77.03 |
| stairway | 32.7 | 38.45 |
| river | 11.6 | 22.81 |
| bridge | 38.77 | 43.57 |
| bookcase | 44.89 | 65.61 |
| blind | 46.61 | 48.95 |
| coffee table | 59.71 | 84.15 |
| toilet | 84.8 | 90.86 |
| flower | 43.64 | 64.1 |
| book | 49.21 | 66.22 |
| hill | 13.48 | 21.64 |
| bench | 55.21 | 64.27 |
| countertop | 49.06 | 73.98 |
| stove | 77.39 | 83.56 |
| palm | 51.11 | 67.45 |
| kitchen island | 49.14 | 76.72 |
| computer | 69.78 | 77.84 |
| swivel chair | 39.71 | 56.34 |
| boat | 48.05 | 52.89 |
| bar | 26.98 | 35.7 |
| arcade machine | 69.15 | 76.38 |
| hovel | 20.92 | 30.12 |
| bus | 87.77 | 97.1 |
| towel | 67.32 | 75.99 |
| light | 57.87 | 64.92 |
| truck | 37.61 | 48.83 |
| tower | 35.31 | 45.43 |
| chandelier | 65.99 | 79.86 |
| awning | 31.7 | 37.19 |
| streetlight | 28.83 | 35.37 |
| booth | 52.58 | 58.07 |
| television receiver | 70.28 | 80.92 |
| airplane | 61.82 | 68.65 |
| dirt track | 13.58 | 49.33 |
| apparel | 40.61 | 58.04 |
| pole | 27.08 | 34.57 |
| land | 1.6 | 3.64 |
| bannister | 15.63 | 19.65 |
| escalator | 28.68 | 31.74 |
| ottoman | 52.2 | 63.91 |
| bottle | 37.11 | 60.8 |
| buffet | 34.32 | 38.55 |
| poster | 30.1 | 37.59 |
| stage | 19.22 | 26.17 |
| van | 42.28 | 60.26 |
| ship | 61.48 | 88.98 |
| fountain | 19.35 | 21.66 |
| conveyer belt | 86.38 | 92.34 |
| canopy | 31.41 | 40.68 |
| washer | 75.23 | 76.0 |
| plaything | 30.46 | 46.68 |
| swimming pool | 70.72 | 77.6 |
| stool | 44.38 | 59.55 |
| barrel | 60.72 | 73.06 |
| basket | 37.5 | 48.99 |
| waterfall | 64.29 | 78.71 |
| tent | 92.9 | 98.47 |
| bag | 16.7 | 19.33 |
| minibike | 71.87 | 86.48 |
| cradle | 77.59 | 96.96 |
| oven | 44.84 | 79.75 |
| ball | 33.6 | 63.33 |
| food | 49.67 | 60.48 |
| step | 11.71 | 13.09 |
| tank | 57.11 | 61.44 |
| trade name | 29.41 | 33.71 |
| microwave | 71.46 | 75.56 |
| pot | 47.52 | 56.11 |
| animal | 43.99 | 44.89 |
| bicycle | 56.79 | 78.38 |
| lake | 54.44 | 63.37 |
| dishwasher | 67.34 | 71.8 |
| screen | 52.35 | 69.01 |
| blanket | 9.74 | 11.95 |
| sculpture | 69.57 | 84.66 |
| hood | 68.9 | 73.3 |
| sconce | 50.94 | 60.25 |
| vase | 46.92 | 61.85 |
| traffic light | 38.47 | 57.45 |
| tray | 11.6 | 18.94 |
| ashcan | 49.51 | 59.73 |
| fan | 64.55 | 77.35 |
| pier | 43.19 | 53.55 |
| crt screen | 6.65 | 20.83 |
| plate | 56.85 | 72.0 |
| monitor | 6.72 | 9.36 |
| bulletin board | 40.76 | 47.92 |
| shower | 2.85 | 4.45 |
| radiator | 66.1 | 72.02 |
| glass | 14.93 | 15.65 |
| clock | 39.09 | 45.98 |
| flag | 53.01 | 56.24 |
+---------------------+-------+-------+
2024/01/14 18:28:07 - mmengine - INFO - Iter(test) [250/250] aAcc: 83.9200 mIoU: 51.1200 mAcc: 62.5500 data_time: 0.0509 time: 8.8501