|
--- |
|
license: mit |
|
base_model: microsoft/git-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: git-base-naruto |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# git-base-naruto |
|
|
|
This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0279 |
|
- Wer Score: 7.0134 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 10 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer Score | |
|
|:-------------:|:-------:|:----:|:---------------:|:---------:| |
|
| 8.5536 | 2.2727 | 50 | 7.1184 | 52.625 | |
|
| 6.2017 | 4.5455 | 100 | 5.0281 | 22.3527 | |
|
| 4.1263 | 6.8182 | 150 | 2.9941 | 21.8616 | |
|
| 2.2013 | 9.0909 | 200 | 1.2700 | 18.7321 | |
|
| 0.7916 | 11.3636 | 250 | 0.3337 | 12.1607 | |
|
| 0.1917 | 13.6364 | 300 | 0.0798 | 4.5357 | |
|
| 0.0458 | 15.9091 | 350 | 0.0356 | 1.0 | |
|
| 0.0142 | 18.1818 | 400 | 0.0278 | 7.25 | |
|
| 0.0066 | 20.4545 | 450 | 0.0287 | 8.4196 | |
|
| 0.0043 | 22.7273 | 500 | 0.0270 | 7.8795 | |
|
| 0.0032 | 25.0 | 550 | 0.0272 | 7.2545 | |
|
| 0.0027 | 27.2727 | 600 | 0.0273 | 7.0179 | |
|
| 0.0023 | 29.5455 | 650 | 0.0271 | 7.2054 | |
|
| 0.002 | 31.8182 | 700 | 0.0275 | 7.0580 | |
|
| 0.0018 | 34.0909 | 750 | 0.0276 | 7.2589 | |
|
| 0.0016 | 36.3636 | 800 | 0.0277 | 7.0312 | |
|
| 0.0015 | 38.6364 | 850 | 0.0277 | 7.0759 | |
|
| 0.0014 | 40.9091 | 900 | 0.0278 | 7.1071 | |
|
| 0.0014 | 43.1818 | 950 | 0.0278 | 7.1161 | |
|
| 0.0013 | 45.4545 | 1000 | 0.0279 | 6.9241 | |
|
| 0.0013 | 47.7273 | 1050 | 0.0279 | 6.9911 | |
|
| 0.0013 | 50.0 | 1100 | 0.0279 | 7.0134 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|