# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple from ...extras.constants import IGNORE_INDEX from ...extras.logging import get_logger from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, infer_seqlen if TYPE_CHECKING: from transformers import PreTrainedTokenizer, ProcessorMixin from ...hparams import DataArguments from ..template import Template logger = get_logger(__name__) def _encode_feedback_example( prompt: Sequence[Dict[str, str]], response: Sequence[Dict[str, str]], kl_response: Sequence[Dict[str, str]], system: Optional[str], tools: Optional[str], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], data_args: "DataArguments", ) -> Tuple[List[int], List[int], List[int], List[int], bool]: if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models prompt[0]["content"] = template.image_token + prompt[0]["content"] if response[0]["content"]: # desired example kto_tag = True messages = prompt + [response[0]] else: # undesired example kto_tag = False messages = prompt + [response[1]] if kl_response[0]["content"]: kl_messages = prompt + [kl_response[0]] else: kl_messages = prompt + [kl_response[1]] prompt_ids, response_ids = template.encode_oneturn(tokenizer, messages, system, tools) kl_prompt_ids, kl_response_ids = template.encode_oneturn(tokenizer, kl_messages, system, tools) if template.efficient_eos: response_ids += [tokenizer.eos_token_id] kl_response_ids += [tokenizer.eos_token_id] if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models image_token_id = tokenizer.convert_tokens_to_ids(template.image_token) prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids kl_prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + kl_prompt_ids source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), data_args.cutoff_len) prompt_ids = prompt_ids[:source_len] response_ids = response_ids[:target_len] kl_source_len, kl_target_len = infer_seqlen(len(kl_prompt_ids), len(kl_response_ids), data_args.cutoff_len) kl_prompt_ids = kl_prompt_ids[:kl_source_len] kl_response_ids = kl_response_ids[:kl_target_len] input_ids = prompt_ids + response_ids labels = [IGNORE_INDEX] * source_len + response_ids kl_input_ids = kl_prompt_ids + kl_response_ids kl_labels = [IGNORE_INDEX] * kl_source_len + kl_response_ids return input_ids, labels, kl_input_ids, kl_labels, kto_tag def preprocess_feedback_dataset( examples: Dict[str, List[Any]], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], data_args: "DataArguments", ) -> Dict[str, List[List[int]]]: # create unrelated input-output pairs for estimating the KL term by flipping the matched pairs kl_response = examples["response"][::-1] model_inputs = { "input_ids": [], "attention_mask": [], "labels": [], "kl_input_ids": [], "kl_attention_mask": [], "kl_labels": [], "kto_tags": [], } if processor is not None: model_inputs["pixel_values"] = [] if hasattr(processor, "image_seq_length"): # paligemma models model_inputs["token_type_ids"] = [] model_inputs["kl_token_type_ids"] = [] for i in range(len(examples["prompt"])): if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2: logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) continue input_ids, labels, kl_input_ids, kl_labels, kto_tag = _encode_feedback_example( prompt=examples["prompt"][i], response=examples["response"][i], kl_response=kl_response[i], system=examples["system"][i], tools=examples["tools"][i], template=template, tokenizer=tokenizer, processor=processor, data_args=data_args, ) model_inputs["input_ids"].append(input_ids) model_inputs["attention_mask"].append([1] * len(input_ids)) model_inputs["labels"].append(labels) model_inputs["kl_input_ids"].append(kl_input_ids) model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids)) model_inputs["kl_labels"].append(kl_labels) model_inputs["kto_tags"].append(kto_tag) if processor is not None: model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor)) if hasattr(processor, "image_seq_length"): # paligemma models model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor)) model_inputs["kl_token_type_ids"].append(get_paligemma_token_type_ids(len(kl_input_ids), processor)) desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag]) undesirable_num = len(model_inputs["kto_tags"]) - desirable_num if desirable_num == 0 or undesirable_num == 0: logger.warning("Your dataset only has one preference type.") return model_inputs