|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
base_model: Qwen/Qwen2.5-7B |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
datasets: |
|
- sumuks/openreview_wintermute_0.1_training_data |
|
model-index: |
|
- name: purple-wintermute-0.1-7b |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.6.0` |
|
```yaml |
|
base_model: Qwen/Qwen2.5-7B |
|
hub_model_id: sumuks/purple-wintermute-0.1-7b |
|
trust_remote_code: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
bf16: true |
|
hf_use_auth_token: true |
|
|
|
plugins: |
|
- axolotl.integrations.liger.LigerPlugin |
|
liger_rope: true |
|
liger_rms_norm: true |
|
liger_glu_activation: true |
|
liger_layer_norm: true |
|
liger_fused_linear_cross_entropy: true |
|
save_safetensors: |
|
|
|
datasets: |
|
- path: sumuks/openreview_wintermute_0.1_training_data |
|
type: completion |
|
field: text |
|
dataset_prepared_path: .axolotl_cache_data/wintermute_0.1 |
|
shuffle_merged_datasets: true |
|
# dataset_exact_deduplication: true |
|
val_set_size: 0.005 |
|
output_dir: ./../../outputs/purple-wintermute-0.1-7b |
|
push_dataset_to_hub: sumuks/purple_wintermute_0.1_training_data_in_progress |
|
|
|
sequence_length: 2048 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
adapter: lora |
|
lora_r: 256 |
|
lora_alpha: 32 |
|
lora_dropout: 0.05 |
|
peft_use_rslora: true |
|
lora_target_linear: true |
|
|
|
gradient_accumulation_steps: 1 |
|
micro_batch_size: 32 |
|
eval_batch_size: 1 |
|
num_epochs: 3 |
|
learning_rate: 5e-5 |
|
warmup_ratio: 0.05 |
|
evals_per_epoch: 10 |
|
saves_per_epoch: 5 |
|
gradient_checkpointing: true |
|
lr_scheduler: cosine |
|
optimizer: paged_adamw_8bit |
|
|
|
profiler_steps: 100 |
|
save_safetensors: true |
|
train_on_inputs: true |
|
wandb_project: wintermute |
|
wandb_name: purple-wintermute-0.1-7b |
|
deepspeed: deepspeed_configs/zero1.json |
|
``` |
|
|
|
</details><br> |
|
|
|
# purple-wintermute-0.1-7b |
|
|
|
This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the sumuks/openreview_wintermute_0.1_training_data dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4027 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 256 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 386 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.8108 | 0.1002 | 258 | 1.9127 | |
|
| 1.6982 | 0.2004 | 516 | 1.8592 | |
|
| 1.663 | 0.3006 | 774 | 1.8258 | |
|
| 1.585 | 0.4008 | 1032 | 1.7978 | |
|
| 1.5201 | 0.5010 | 1290 | 1.7578 | |
|
| 1.4313 | 0.6012 | 1548 | 1.7181 | |
|
| 1.3256 | 0.7014 | 1806 | 1.6692 | |
|
| 1.2364 | 0.8016 | 2064 | 1.6194 | |
|
| 1.161 | 0.9017 | 2322 | 1.5741 | |
|
| 1.1284 | 1.0016 | 2580 | 1.5281 | |
|
| 1.0433 | 1.1017 | 2838 | 1.4999 | |
|
| 1.0058 | 1.2019 | 3096 | 1.4770 | |
|
| 1.0179 | 1.3021 | 3354 | 1.4603 | |
|
| 0.9993 | 1.4023 | 3612 | 1.4409 | |
|
| 0.99 | 1.5025 | 3870 | 1.4319 | |
|
| 0.9971 | 1.6027 | 4128 | 1.4222 | |
|
| 0.9626 | 1.7029 | 4386 | 1.4126 | |
|
| 0.9396 | 1.8031 | 4644 | 1.4083 | |
|
| 0.9497 | 1.9033 | 4902 | 1.4041 | |
|
| 0.901 | 2.0031 | 5160 | 1.4068 | |
|
| 0.9222 | 2.1033 | 5418 | 1.4081 | |
|
| 0.8882 | 2.2035 | 5676 | 1.4060 | |
|
| 0.9253 | 2.3037 | 5934 | 1.4043 | |
|
| 0.8687 | 2.4039 | 6192 | 1.4035 | |
|
| 0.9058 | 2.5041 | 6450 | 1.4025 | |
|
| 0.8624 | 2.6043 | 6708 | 1.4033 | |
|
| 0.8928 | 2.7045 | 6966 | 1.4028 | |
|
| 0.874 | 2.8047 | 7224 | 1.4029 | |
|
| 0.8892 | 2.9049 | 7482 | 1.4027 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.48.0 |
|
- Pytorch 2.5.1 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.21.0 |