--- library_name: transformers license: mit base_model: microsoft/table-transformer-structure-recognition-v1.1-all tags: - generated_from_trainer model-index: - name: detr_finetuned_cppe5 results: [] --- # detr_finetuned_cppe5 This model is a fine-tuned version of [microsoft/table-transformer-structure-recognition-v1.1-all](https://huggingface.co/microsoft/table-transformer-structure-recognition-v1.1-all) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 3.3083 - eval_map: 0.0584 - eval_map_50: 0.1515 - eval_map_75: 0.0479 - eval_map_small: -1.0 - eval_map_medium: 0.007 - eval_map_large: 0.0646 - eval_mar_1: 0.0746 - eval_mar_10: 0.115 - eval_mar_100: 0.1545 - eval_mar_small: -1.0 - eval_mar_medium: 0.0439 - eval_mar_large: 0.1653 - eval_map_table: 0.2451 - eval_mar_100_table: 0.2882 - eval_map_table column: 0.0237 - eval_mar_100_table column: 0.1297 - eval_map_table column header: 0.0245 - eval_mar_100_table column header: 0.1224 - eval_map_table projected row header: 0.0003 - eval_mar_100_table projected row header: 0.0125 - eval_map_table row: 0.0254 - eval_mar_100_table row: 0.235 - eval_map_table spanning cell: 0.0311 - eval_mar_100_table spanning cell: 0.1393 - eval_runtime: 80.5383 - eval_samples_per_second: 0.633 - eval_steps_per_second: 0.087 - epoch: 1.0 - step: 22 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 10 ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0