|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: facebook/w2v-bert-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: w2v-bert-cv-grain-lg_both |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# w2v-bert-cv-grain-lg_both |
|
|
|
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 16.2243 |
|
- Wer: 1.0 |
|
- Cer: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| |
|
| 0.4609 | 1.0 | 5406 | 0.1400 | 0.1423 | 0.0296 | |
|
| 0.2829 | 2.0 | 10812 | 0.1133 | 0.0968 | 0.0213 | |
|
| 0.2369 | 3.0 | 16218 | 0.1033 | 0.0883 | 0.0193 | |
|
| 0.2106 | 4.0 | 21624 | 0.0848 | 0.0681 | 0.0162 | |
|
| 0.197 | 5.0 | 27030 | 0.0871 | 0.0681 | 0.0159 | |
|
| 0.2459 | 6.0 | 32436 | 0.1335 | 0.1022 | 0.0203 | |
|
| 0.3563 | 7.0 | 37842 | 0.1809 | 0.1254 | 0.0267 | |
|
| 0.6033 | 8.0 | 43248 | 0.5575 | 0.7032 | 0.1768 | |
|
| 4.656 | 9.0 | 48654 | 16.9063 | 0.9980 | 0.9837 | |
|
| 10.5595 | 10.0 | 54060 | 12.4706 | 1.0 | 1.0 | |
|
| 17.1148 | 11.0 | 59466 | 16.2280 | 1.0 | 1.0 | |
|
| 17.4223 | 12.0 | 64872 | 16.2273 | 1.0 | 1.0 | |
|
| 17.4172 | 13.0 | 70278 | 16.2222 | 1.0 | 1.0 | |
|
| 17.4159 | 14.0 | 75684 | 16.2243 | 1.0 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.1 |
|
|